Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metodichka_2.doc
Скачиваний:
16
Добавлен:
12.05.2015
Размер:
644.61 Кб
Скачать

3. Read and translate the text into Ukrainian. Mixing and blending

Mixing is the process of thoroughly combining different materials to produce a homogenous product. The mixture is generally a combination of dissimilar materials, e.g. coal ash and cement are blended in a specified ratio to produce Pozzocrete cement. In other cases, a chemically homogenous material may be mixed to produce a uniform lot of a desired weight/volume with consistent particle size distribution, color, texture, and other required attributes, e.g. metal powders produced in 1 ton batch size are blended to a homogenous lot size of 4 tons (or pre-specified quantity).

The terms "mixing" and "blending" are often used interchangeably, but technically they are slightly different. Blending is a process of combining materials, but blending is a relatively gentle process compared to mixing. In terms of the phase of material, blending is the process of solid-solid mixing or mixing of bulk solids with small quantity of liquid. The terminology mixing is more closely associated with liquid-liquid, gas-liquid, and viscous materials.

Mixing and blending are the most demanding unit operations in the chemical process industries (mixing and blending of specialty chemicals, explosives, fertilizers, dry powdered detergents, glass or ceramics, and rubber compounds). Pharmaceutical and food industries also rely heavily on mixing and blending technology (blending of active ingredients of a drug with excipients like starch, cellulose, or lactose; preparation of cake mix, spices, and flavours)

The wide variety and ever increasing complexity of mixing processes encountered in industrial applications requires careful selection, design, and scale up to ensure effective and efficient mixing. Improved mixing efficiency leads to shorter batch cycle times and operational costs. Today's competitive production lines necessitate robust equipment that are capable of fast blend times, lower power consumption, equipment flexibility, ease of cleaning, and a gamut of customized features. In addition to blending components, many modern mixers are designed to combine different process steps in a single equipment, e.g. coating, granulation, heat transfer, drying, etc.

At the numerous enterprises of chemical, food, pharmaceutical and other industries, the equipment with machine mixing devices is practised on a large scale in processes requiring dissolution, leaching, emulsification, formation of suspension as well as homogeneous and heterogeneous systems mixing. Industrial mixers are machines that blend, homogenize, emulsify or otherwise mix components into a homogenous substance.

Industrial mixers are used to thoroughly combine any type of liquid or solid during the manufacturing process. They are usually large tanks or vats with motorized blades or paddles that rotate on a stationary shaft or remain stationary themselves. Depending on the application, some models may have sharp blades while other may have large flat paddles. The attachments or heads are generally removable to maximize the mixer's effectiveness with different materials. Stainless steel is most commonly used, especially within the food and beverage industry because of the metal's sanitary and hygienic properties.

Other possible materials include aluminum, steel or cast iron. Industrial mixers are widely used across many industries including the cosmetic, pharmaceutical, chemical, agricultural, pulp and paper, automotive, water treatment, adhesive and sealant industries. These mixers are equipped to handle glue, petroleum products, cement, biodiesel, dry and wet chemicals, medicines, toothpaste, food colouring, syrups, medical ointment, lotions, creams, vitamins, shampoos, detergents, hair dye, petroleum products, silicone, adhesives, polyurethane and many other products or ingredients.

Within the single category of industrial mixers, there are many kinds and varieties of these machines that have been specialized. Blenders are very similar if not identical to mixers; some prefer to differentiate between the two because blenders sometimes have sharper blades that move at faster speeds. In terms of processing speed and style, there are two modes. Batch mixers are the more common of the two kinds. Mixing begins after a substance is poured into the industrial mixer. Once mixing is complete, the substance is poured out of the mixer for further processing and the mixer is then cleaned before being refilled. Continuous-feed mixers can handle a steady flow of material. Static mixers are inline and continuous feed mixers because they do not move. The materials are mixed as they flow around the strategically-placed blades and paddles.

Another kind of industrial mixer is a drum mixer which consists of a rotating drum on the frame. There are multiple mixers used to accomplish a solution or substance that is the same throughout. High shear mixers offer shorter mixing times than standard mixers. The speed of the product at the tip of the rotor is higher than the speed at the centre which emulsifies immiscible materials. Similarly, homogenizers and emulsifiers achieve the same results by forcing substances to pass through a screen. Also known as mixers, agitators are the only machines that can blend chemicals, foods and other low-viscosity materials with ease. Because they have relatively small blades, they're also best used for slow, low-shear mixing processes where it's more important to keep the mixture moving than it is to actually blend its ingredients.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]