Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АСУиО(конспект лекций).doc
Скачиваний:
139
Добавлен:
08.05.2015
Размер:
1.6 Mб
Скачать

1.5.3. Метод неопределенных множителей Лагранжа

Решение задачи лежит там, где , то есть условием минимума является равенство:

Введем обозначение:

,

где  = {1,…,m} образуют вектор некоторых множителей.

С учетом этого условие минимума можно представить в виде следующей системы:

Система (2) тождественна условию и определяет решение задачи. Эту систему можно составить формально как условие минимума некоторой функции Лагранжа L(,Y,)

L(,Y,) = F(,Y) + G(,Y)min.

Функцию Лагранжа можно составить, не разделяя X на зависимые и независимые составляющие:

L(Х,) = F(Х) + G(Х)= F(Х) + Σjg j (X) min.

.

Условие минимума:

.

Эта система из (m + n) уравнений позволяет найти все неизвестные xi и неопределенные множители j.

1.6. Оптимизация с учетом ограничений в форме неравенств

Общая задача нелинейного программирования содержит ограничения в форме неравенств

F(Х) min;

G(Х) ≥ 0.

Учет таких ограничений является наиболее сложным. Простейший подход, заключающийся в последовательном решении задачи без учета ограничений с последующей проверкой ограничений и закреплении вышедших за допустимую область переменных на границе, далеко не всегда дает правильное решение.

На рис.1.12 показан такой случай F(x)  min; g1(x) ≥ 0; g2(x) ≥ 0.

Решение без учета ограничений определяет точку A(x`1,x`2), в которой нарушены оба ограничения

g1(x) = x1max – x1 < 0;

g2(x) = x2max – x2 < 0;

Закрепление переменных на границе определяет точку В предполагаемого решения, для которой x1ОПТ = x1max, x2ОПТ = x2max.

Фактически же решение лежит в точке C. В этой точке только x2ОПТ лежит на границе и ограничение g2(x) называют активным. Переменная x1ОПТ < x1max, и ограничение g1(x) называют пассивным.

Таким образом, при решении могут возникнуть самые разные ситуации, в которых надо определять тип ограничений (активные или пассивные). При учете активных ограничений нужно использовать проекции градиента, если антиградиент выводит за допустимую область и т.п.

Поэтому для учета ограничений в форме неравенств существует много методов. Большинство основано на идее проектирования градиента и называются проективными. В последнее время начинают использовать методы, основанные на линеаризации, т.е. замене нелинейностей в исходной точке Х(0) разложением в ряд Тейлора с учетом первых двух членов разложения, линеаризации задачи и поиска минимума симплекс- методом.

Критерием окончания такого итерационного процесса является небольшая разница между значениями, полученными на смежных итерациях.

Наиболее простой метод учета ограничений – метод штрафных функций. Здесь допускается любое значение неизвестных, но при выходе за допустимую область к F(X) добавляется штрафная функция. Величина штрафа зависит от степени нарушения ограничений.

Формируемая функция имеет вид ,

где ;

.

На рис. 1.13 показана оптимизация для функции с одной переменной:

f(x)min;

g1(x) = xmaxx  0;

g2(x) = xxmax  0;

Решение по методу всегда лежит за допустимой областью, но вблизи границы.

Жесткость ограничения зависит от величины коэффициента штрафа kШ. Сочетание метода штрафных функций с методами нулевого порядка позволяет строить надежные алгоритмы решения общей задачи нелинейного программирования.