Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Орлов. Основы классической ТРИЗ

.pdf
Скачиваний:
543
Добавлен:
06.05.2015
Размер:
19.81 Mб
Скачать

Саму способность к функционально-идеальному моделированию также надо тренировать. Например, чтением научно-фантастической литературы, детективных романов, анекдотов, даже сказок, просмотром юмористических и фантастических рисунков, произведений живописи, прослушиванием необычных музыкальных произведений.

Кроме концепции функционального идеального моделирования, для преодоления психологической инерции в ТРИЗ был создан ряд «неалгоритмических» методов:

«Фантограмма» и моделирование по координатам «Размерность — Время — Стоимость» (специальная сокращенная форма «Фантограммы»);

модель «Было — Стало»;

«Моделирование маленькими фигурками»;

рекомендации по предотвращению логических и психологических ошибок.

Первые два метода используются для снятия психологической инерции на начальных стадиях решения задачи, при се «растряске», а третий метод является эффективным «неалгоритмическим» инструментом для генерирования новых идей. Психологические рекомендации рассмотрены ниже в разделе 19 Интеграция ТРИЗ в профессиональную деятельность.

Первая модель применяется прежде всего для «расчистки» мышления от негативных стереотипных представлений об исходной задаче и о целях се решения. Цель — увидеть (нестрого!) особенности этого объекта, границы возможностей его трансформации.

«Фантограмма» представляет собой таблицу (рис. 18.4), помогающую провести экспресс-тренинг или экспресс-стимуляцию воображения непосредственно на примере объекта решаемой проблемы.

Сама идея «Фантограммы» возникла у Г. Альтшуллера при изучении сотен произведений научной фантастики. Он подошел к оценке этих произведений так же, как и к оценке изобретений на новизну и полезность. Действительно, в «фантастике» является правилом создание произведений только с новой, оригинальной идеей фантастического сюжета. Это требует незаурядного воображения и знаний. В то же время, для тренинга участникам полезно самим пробовать создавать новые объекты и процессы, применяя для этого «Фантограмму».

«Многие привыкли смотреть на научно-фантастическую литературу как на развлекательное чтение, на литературу второго сорта... Ни одна из сравнительных таблиц предсказаний и степени их реального воплощения, составлен-

ных по оценкам ученых, не дает столь высокого процента успеха, как у писа- телей-фантастов. А ведь писатели-фантасты заглядывают в будущее на десятки и сотни лет. Например: утопия Ф. Одоевского «4338 год. Петербургские письма» (1840) — самолеты, электропоезда, синтетические ткани, самодвижущиеся дороги; роман А. Богданова «Красная звезда» (1908) — атомные двигатели, заводы-автоматы; утопия В. Никольского «Через тысячу лет» (1926) — прямое предсказание, что первая атомная бомба будет взорвана в 1945 году; роман первого американского писателя-фантаста X. Гернсбека «Ральф 124С41+» (1911) — видеотелефон, гипнопедия, микрофильмы, радиолокация, ракеты(78).»

Жюль Верну79 принадлежит следующее высказывание: «Все, что человек способен представить в своем воображении, другие сумеют претворить в жизнь.» Г. Альтшуллер составил таблицу (80) (рис. 18.5), убедительно подтверждающую, что «история научной фантастики дала яркие примеры превращения «невоз-

можного» в «возможное»»

Потрясающим научно-фантастическим предвидением обладал основоположник теории ракетного и космического движения Константин Циолковский82-. Вот некоторые из его сбывшихся, а также вполне вероятных идей:

1.Ракетный самолет с крыльями и обыкновенными органами управления.

2.Уменьшение крыльев самолета с увеличением тяги двигателей и скорости полета.

3.Проникновение в разреженные слои атмосферы, полет за пределы атмосферы и спуск планированием.

4.Основание подвижных станций вне атмосферы (искусственные спутники Земли)..

5.Посадка на Луну.

6.Скафандры, в том числе с жидкостным наполнением.

7.Использование космонавтами энергии Солнца сначала для жизненных целей станции, а затем и для перемещения в космосе.

8.Увеличение числа космических станций, развитие в космосе индустрии (см. еще один проект А. Юницкого далее в этом разделе).

Вместе с тем, механизм воздействия фантастики на науку не сводится к простой формуле «фантаст предсказал — ученый осуществил». Часть прогнозов оказывается, например, неверной или социально неприемлемой.

Специализированная форма «Фантограммы» стала самостоятельным ТРИЗ-инструментом в виде модели «Размерность — Время — Стоимость» (для краткости: модель РВС).

Как и «Фантограмма», модель РВС предназначена для расшатывания привычных представлений об объекте. То есть ее назначение — переводить «привычное» в «непривычное». При использовании этой модели последовательно рассматривают изменение условий задачи в зависимости от изменения трех параметров: геометрических размеров — Р (однако, в общем случае, это могут

8 1 А л е к с а н д р Б е л я е в (1884—1942) — один из первых русских авторов - фантастов .

82 Константин Циолковский (1857—1935) — выдающийся русский ученый-самоучка, основоположник теории ракетного движения, движения спутников и полетов на Луну и другие планеты.

быть изменения «размера» любого параметра, например, температуры, прочности, яркости и т. п.), времени — В, стоимости — С. Для РВС-моделирова- ния используется специальная таблица (рис. 18.6). Каждый параметр нужно изменять в максимально большом диапазоне, границами которого может быть только потеря физического смысла задачи. Значения параметров нужно менять ступенями так, чтобы можно было понимать и контролировать физическое содержание задачи в новых условиях. Рассмотрим один из классических примеров, разработанный еще Г. Альтшуллером.

Пример 122. РВС-моделирование. Допустим, что проводится подготовка к решению задачи об обнаружении неплотностей и утечки рабочего вещества из агрегатов холодильника. Результаты РВС-моделирования представлены в таблице на рис. 18.6.

При РВС-моделировании ответы могут быть очень разными — это зависит от фантазии, знаний, опыта, индивидуальных качеств человека. Нельзя только заменять цель исходной задачи! Например, нельзя в последней строке писать: повысить качество изготовления агрегатов — хотя, конечно, на практике разумнее предотвратить появление неплотностей, чем потом «бороться» с ними.

И еще о стоимости: изменение этого параметра в сторону увеличения означает лишь допущение, что есть гипотетическая «возможность» заплатить за изменение как угодно много. А ответить нужно на вопрос: что при этом изменится в отношении к проблеме? Как она тогда может быть решена и почему?

РВС-моделирование часто сопровождается иллюстрациями. При этом рекомендуется выполнять рисунки с возможной тщательностью, не допуская небрежности. Плохой рисунок, как правило, свидетельствует о плохом понимании задачи. При этом минимальное количество рисунков два: рисунок «Было» (или «Есть») и рисунок «Стало» (или «Должно быть»). Иногда полезно выполнить оба рисунка в одном масштабе, а потом совместить их, и все отличия выделить потом цветом.

А теперь два примера.

Пример 123. Кольцо на земном шаре. Это также одна из разминочных задач для тренингов. Она формулируется очень просто и имеет очень простой ответ. Но дело в том, что на тренинге требуется решить эту задачу за 20 секунд! Возьмите часы с секундной стрелкой и только после этого прочитайте условие задачи.

Оказывается, наши возможности восприятия и осознания условий задачи также непостоянны и зависят от многих факторов. В частности, если на семинаре сначала говорится, что Вы должны решить достаточно сложную задачу, а потом время ограничивается 20 секундами, то процент правильно и вовремя решивших задачу падает!

Итак, задача: предположим, что на «идеально круглый» земной шар плотно надето тонкое раздвигающееся кольцо. Вам нужно раздвинуть его так, чтобы с одной стороны образовался зазор между кольцом и поверхностью Земли, достаточный, чтобы Вы проползли под кольцом, например, в 0,5 м. На сколько километров нужно увеличить окружность кольца?

Пример 124. Космический транспорт и космическое индустриальное кольцо А. Юницкого. Потрясающий пример РВС-моделирования представляет собой исследование еще одного невероятного, но не противоречащего физическим законам, изобретения уже известного нам изобретателя Анатолия Юницкого (см. раздел 15.3). На этот раз он изобрел... колесо! Но не простое, а размером в земной шар! Да, он именно и предложил надеть на Землю по экватору кольцо, которое будет затем космическим транспортным средством: на рис. 18.7,а «Было = Кольцо», а на рис. 18.7,b «Стало = КТС (Космическая Транспортная Система)». Фантастичность этого проекта превосходит выдумку самого барона Мюнхгаузена, который вытянул себя вместе с лошадью из болота за собственную косичку! Однако, в КТС дело обстоит именно таким образом — КТС сама себя выносит в космос.

Пусть кольцо 1 (рис. 18.7,а) представляет собой ротор шагового электродвигателя на магнитном подвесе. Статор двигателя выполнен внутри оболочки, в которой находится ротор, и также охватывает земной шар. Ротор висит в оболочке на магнитном подвесе и никакими элементами не касается оболочки. Размер ротора может быть 20—40 см. Внутри ротора могут располагаться материалы для создания сооружений в космосе или сырье для работы космической промышленности. После разгона ротора до скорости, превышающей первую космическую скорость, например, до 10 км/сек, он становится... невесомым! Тогда отключают магнитный подвес, и ротор уносится в космос! На

высоте ло 10 км (позиция 2 на рис. 18.7, b) сбрасывается оболочка, опускаемая на Землю на парашютах. Далее ротор поднимается на заданную высоту. Например, в позиции 2 на рис. 16.7, b высота над Землей может быть 100 км. а в позиции 3—1000 км.

Ротор выполнен состоящим из секций, соединенных телескопическими связями. Поэтому он свободно увеличивается по размеру диаметра и, соответственно, по размеру окружности. При диаметре Земли по экватору в 12 756 км окружность экватора равна примерно 40 000 км. Такова же и стартовая окружность ротора. На высоте 100 км его окружность увеличится всего лишь на 628 км или на 1,6%, а на высоте в 1000 км — на 6280 км или на 15,7%. (Сравните с параметрами в предыдущей задаче, но с учетом того, что там кольцо прижимается к Земле с одной стороны и отодвигается с другой!)

При торможении ротора он начинает сжиматься и может опускаться на Землю! При этом возможен дополнительный возврат (рекуперация) огромного количества энергии!

Если в космосе производить хотя бы 1 % сегодняшних конструкционных материалов или 50 % вырабатываемой сейчас энергии, то геокосмический грузопоток должен быть минимум 10 миллионов тонн в год. Для выведения такого количества груза на орбиту, скажем, к 2020 году, кораблями типа «Шаттл» при интенсивности запусков 60 в год эту программу надо было начинать осуществлять раньше, чем в Древнем Египте приступили к строительству пирамиды Хеопса! А выводить столько грузов в год — вовсе нереально!

Причем уже сегодня ракетный транспорт близок к потенциальным пределам своего развития как с экономической, так и с технической и экологической точек зрения. Например, подсчитано, что всего лишь не более 100 частых запусков орбитального корабля типа «Шаттл» приведут к катастрофическому и необратимому разрушению озонового слоя планеты продуктами сгорания ракетного топлива.

КТС способен вывести в космос и забрать из космического индустриального кольца за один полет от 1 до 5 миллионов тонн полезного груза! В год могут

быть сделаны десятки стартов-посадок, практически безвредных для природы! Себестоимость выведения грузов в космос с помощью АТС будет менее 1 доллара США за килограмм, что в тысячи раз меньше в сравнении с ракетным транспортом!

В таблице на рис. 18.8 приведен сокращенный перечень изобретательских приемов, реализованных в космической транспортной системе А. Юницкого.

На начало III тысячелетия применение космической транспортной системы А. Юницкого для создания геокосмической индустриальной цивилизации — самая практичная идея из всех самых фантастических идей.

И в заключение этого раздела приведем оптимистическое напутствие Г. Альтшуллера: «Освоение техники фантазирования нисколько не похоже на зазуб-

ривание шаблонных текстов. Одно и то же упражнение может быть выполнено по-разному в зависимости от личности человека. Здесь, как в музыке, технические приемы помогают раскрытию индивидуальных качеств, и интересно выполнение упражнения порой доставляют подлинно эстетическое удовольствие, как хорошо сыгранное музыкальное произведение.»

18.3. Моделирование маленькими фигурками

По-видимому, первым примером применения ТРИЗ к самой себе для своего же развития было создание Метода моделирования маленькими фигурками (ММФ). Г. Альтшуллер обратил внимание на противоречия приема эмпатии (уподобления себя изменяемому объекту) из Синектики Гордона: сильная сторона — включение фантазии и органов чувств для стимуляции воображения, слабая сторона — принципиальная ограниченность метода при некоторых часто встречающихся трансформациях типа разделения объекта, разрезания, растворения, скручивания, взрывания или конденсации, сжатия, нагрева

ит. п. Итак, эмпатия должна быть, и ее не должно быть! Идеальное решение — принцип копирования! Пусть действия моделируются, но не самим изобретателем, а какой-то условной моделью-фигуркой, а еще лучше толпами маленьких фигурок в любом нужном количестве и с любыми неожиданными

ифантастическими свойствами!

Аналогами для такой идеи послужили известные примеры из истории творческих решений. Так, известный химик Кекуле83 «увидел» структурную формулу молекулы бензола (С6Н6) сначала в виде кольца обезьян, ухватившихся за прутья клетки, а также за передние и задние руки друг друга. А в мысленном эксперименте Максвелла84 требовалось из одного и того же сосуда с газом перевести в другой сосуд частички газа с большей энергией. Максвелл мысленно соединил сосуды трубочкой с «дверцей», которую «маленькие демоны» открывали перед высокоэнергстическими быстрыми частичками и закрывали перед медленными.

Историю с Кекуле историки творчества обычно приводили только для того, чтобы поговорить о роли случайности в открытии или изобретении, а из опыта Максвелла делали и без того очевидный вывод о важности воображения для ученого. И только Г. Альтшуллер превратил эти случаи в метод! Он дал ему название: Метод моделирования маленькими человечками. Много лет назад автор учебника заменил в названии слово «человечки» на более эмоциональ- но-нейтральное — «фигурки». Дело в том, что в некоторых ситуациях часть или всех «человечков» нужно тем или иным способом уничтожать, что вызывает психологический дискомфорт при использовании этого образа и также мешает успешно решать творческие задачи. Дискомфорт практически отсутствует при следующем представлении о «фигурках»: они умеют выполнять лю-

83 Кекуле фон Страдониц Ф. А. (1829—1896) — немецкий химик, открывший формулу бензола.

84 Джеймс Максвелл (1831 — 1879) шотладский физик, создавший теоретические основы описания электромагнитных нолей.

бые наши фантазии, умеют активно действовать, но остаются абсолютно абстрактными объектами наподобие шахматных фигур или нарисованных карикатурных персонажей. «Фигурки» не более «живые» и «эмоциональные», чем любой напечатанный на этой странице символ: буква, запятая, точка, скобка, которые при необходимости можно спокойно стереть, чтобы заменить новыми символами.

Взяты именно условные «фигурки», а не, например, молекулы или микробы. Дело в том, что для мысленного моделирования нужно, чтобы маленькие частицы «видели», «понимали», могли действовать «коллективно»! Применяя ММФ, изобретатель также использует эмпатию, но не сам! Это за него делают маленькие фигурки! А изобретатель, словно кукловод или художник-анима- тор управляет этими фигурками и сам наблюдает их действия. Сохранена сильная сторона эмпатии без присущих ей недостатков. Правила ММФ представлены в таблице на рис. 18.9.

Рис. 18.9. Шаги и операции ММФ ТАБЛИЦА

Одной из первых демонстрационных задач по ММФ была следующая.

Пример 125. Адаптивный полировальный круг. Для полирования сложных поверхностей трудно применять обычные полировальные круги, так как при большой толщине круга он не может попасть в узкие щели в изделии, а при узком круге падает производительность полирования. Применение ММФ может быть представлено следующим описанием.

Шаг 1. Изменять по правилам ТРИЗ нужно инструмент. Представим полировальный круг состоящим из двух частей, одна из которых, по-видимому, соприкасающаяся с изделием, должна быть подвергнута трансформации (слева на рис. 18.10,а).

Шаг 2. Теперь нарисуем множество фигурок, стремящихся изменить (справа на рис. 18.10,а) цилиндрическую поверхность круга! Более того, пусть фигурки будут сами полировать деталь! А другие фигурки пусть держат тех, кто полирует.

Шаг 3. Пусть дана деталь сложной формы (рис. 18.10,b). Теперь во время вращения круга человечки прижимаются к детали, но только в месте соприкосновения круга с деталью. А после выхода из контакта с деталью фигурки собираются в группу, придающую кругу привычную форму тела вращения.

Здесь все соответствует максимальной функциональной идеальной модели: круг сам принимает форму детали!

Шаг 4. Таким образом, становится яснее, что круг должен быть устроен так, чтобы его наружнаяя рабочая часть была динамизирована и могла адаптироваться к профилю поверхности детали. Первая техническая возможность: составные круги из многих пластин. Идея выглядит сомнительной из-за сложности, а из-за неравномерного износа пластин и вовсе может не дать нужного результата. Вторая возможность: выполнить внешнюю, динамизируемую часть из магнитоабразивного порошка, а сердцевину круга — в виде магнита. Тогда магнитоабразивные частицы будут, как и маленькие фигурки, подвижными, чтобы принимать вместе форму детали, и будут твердыми (по отдельности), чтобы полировать деталь. На нерабочих участках во время вращения круга частицы будут немедленно располагаться в соответствии со структурой удерживающего их внутреннего магнитного поля.

ММФ снижает инерцию, связанную с визуальным представлением и восприятием объектов. Поэтому принципиально важно рисовать объект достаточно крупно, чтобы силы, моделируемые в объекте, были представлены толпами фигурок, не стесненными линиями маленького рисунка и действующими нужным идеальным образом.