Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Орлов. Основы классической ТРИЗ

.pdf
Скачиваний:
543
Добавлен:
06.05.2015
Размер:
19.81 Mб
Скачать

Здесь следует ответить отрицательно на вопрос о том, можно ли, последовательно применяя изобретательские технологии к каждому очередному решению, изобрести либо некий самый лучший продукт, либо ряд будущих безусловных лидеров на рынке, например, на десятилетия вперед? Дело в том, что только испытание практикой по циклу, приведенному на рис. 14.2. дает реальные критерии для управления развитием систем.

Реальные оценки необходимы для построения и корректировки эффективных сценариев развития. И чем раньше, тем лучше. А для этого приходится рисковать и выпускать новые образцы. И осуществлять параллельно непрерывный поиск новых идей. При этом можно и нужно применять методику изобретательского творчества для непрерывного прогнозирования на достаточно большие интервалы времени вперед. Ключевые аспекты и альтернативы развития систем показаны на рис. 14.3.

Одним из практических результатов системного анализа должно быть решение о выборе стратегического направления предстоящих изменений в существующей системе или в создании новой системы. В классической ТРИЗ для этого были сформулированы концепции «Минимальной задачи» и «Максимальной задачи». Важнейшей является первая концепция, задающая стратегию достижения наилучшего результата с «нулевыми» затратами. Эта постановка расходится с известными принципами математической оптимизации, которая в самом экстремальном случае предусматривает готовность к минимальным затратам при достижении максимального эффекта (минимаксные модели). Полому концепция «Минимальной задачи» имеет психологическое значение, гак как создает полезную установку на получение «идеального результата» и тем самым обеспечивает мобилизацию творческих ресурсов для достижения наилучших реальных результатов.

Следует также отметить, что задачи могут быть как сложными, так и простыми при любой стратегии (рис. 14.4).

В соответствии с этой таблицей все задачи можно разбить на 3 категории:

«Исправительные задачи» — на устранение негативной функции, разумеется,

без снижения качества реализации главной позитивной функции;

«Альтернативные задачи» — на поиск другою способа (принципа) выполнения позитивной функции с попутным устранением имеющейся негативной функции или для более высокого уровня реализации полезной функции;

«Отказные задачи» — на поиск способа отказаться от выполнения полезного действия.

А теперь я приведу завершение истории, о которой начал рассказывать в разлете 7.1. На следующий день мой стенд посетили два инженера, направленные моим вчерашним собеседником и оппонентом, шефом отделения R&D машиностроительного предприятия. Через 30 минут демонстрации «Invention Machine» их восторг подавляло лишь собственное упоминание о том, что на их фирме не удастся убедить руководство приобрести этот софтвер! Конечно, я уже имел определенный опыт оценки размера фирм по размерам их стендов на выставках, но здесь я ошибся. Да, стенд этой фирмы впечатлял, но то, что

я случайно узнал в беседе с инженерами, поразило еще больше. Оказалось, что только на перспективных разработках в отделении R&D занято почти 100 специалистов! Я еще раз передал свою визитку с посетившими меня инженерами. Вскоре поступило приглашение, и при второй встрече состоялся примерно следующий диалог:

Почему Вы не можете продавать успешнее других?

На рынке много производителей аналогичной продукции.

У вашей продукции есть преимущества?

Да, но не большие. Отрасль консервативна, с историей и традициями, трудно что-то необычное предложить.

Но можете ли Вы предложить свои изделия по более низкой цене?

Нет. Очень высокая себестоимость. Много металла. Высокая трудоемкость.

Но что, в таком случае, делают 100 ваших R&D-специалистов?

?!

Ваши инженеры не виноваты в том, что я смог оценить численность ваших R&D-специалистов. Но их цели мне не понятны. Если имеются спрос и рынок, тем более традиционный и консервативный, то есть только два пути успешно продавать: предложить более высокое качество и новые функции или при том же качестве снизить цену.

Очень трудно перестроить производство.

Да, если это не спланировано заранее.

Все внимательно наблюдают за изменениями у других.

Снижение себестоимости может быть незаметным для других. Тогда даже при неизменной позиции на рынке Вы можете несколько лет получать прибыль, не видимую для других.

Все же качество ценится больше.

Хорошо. Обучайте своих людей. За тот же срок подготовьте такие изменения, которые Вы выведете на рынок первыми. Тот, кто попробует потом Вас догонять, все еще будет в том положении, в котором он и Вы находитесь сейчас.

Через месяц пришел заполненный бланк заказа на софтвер «Invention

Machine».

Ивсе же начальная позиция слишком многих руководителей в промышленности остается сходной с той, которую Вы могли видеть у моего собеседника.

Ивсе же это еще не все. По ежегодной традиции я провел два дня в Ганновере на выставке lndustriemesse' 2001. И снова записал потрясающий текст, отражающий, несомненно, непревзойденный талант самовыражения, сравнимый разве только с американским! В огромном холле железнодорожного портала,

служащего наподобие парадного вестибюля выставки, на огромном плакате можно было прочитать следующее:

Я полагаю, что Вы не только по достоинству оценили смелый юмор создателей этого плаката, но и, по-видимому, вспомнили о пионерских технических достижениях этого региона. Предприятие, о котором я рассказал, тоже из земли Баден-Вюртемберг (главный город — Штуттгарт), так что может быть нужно относиться к рассказанной истории с большим юмором и маркетинговым оптимизмом.

Искусственные (технические) системы, подсистемы, узлы, детали, элементы, материалы создаются для выполнения полезных (позитивных) функций (PF — positive function). Одна из них может быть названа главной (MPF — main positive function), определяющей назначение всей системы (подсистемы, узла, детали, элемента, материала). Другие PF являются дополнительными и вспомогательными. В системе имеются нежелательные (негативные) функции (NF — negative function) и, соответственно, главная негативная функция (MNF — main negative function), являющаяся основным препятствием на пути развития системы. Негативные функции NF ухудшают степень выполнения системой своих позитивных функций PF или создают другие нежелательные эффекты, например, для окружающих систем.

Один из главных показателей в развитии технических систем — изменение их размеров. Это развитие может идти в обоих направлениях: как в сторону увеличения, так и в сторону уменьшения. Например, для многих транспортных и обрабатывающих машин характерно увеличение размеров (шагающий экскаватор, танкер-сухогруз или перевозчик нефти, пассажирский или грузовой самолет). Контрольно-измерительные приборы, средства связи, компьютеры, напротив, имеют тенденцию к миниатюризации. Это явление было замечено и проанализировано в ТРИЗ, и привело к весьма конструктивной концепции «идеальной машины».

Концепция «Идеальной Машины» (IM — ideal machine) является в ТРИЗ такой же полезной метафорой, как и понятия «функциональная идеальная модель» и «идеальный конечный результат», и как бы конкретизирует последнее. Эта метафора имеет, однако, весьма фундаментальное обоснование, впервые четко сформулированное и конструктивно примененное именно в ТРИЗ.

В наиболее обостренном и метафорическом виде определение звучит так:

Или:

Имеется в виду следующее: машина должна иметь нулевой вес, нулевые размеры, нулевую стоимость, нулевое потребление энергии, нулевые вредные отходы и т. п.

Конечно, под идеальным конечным результатом в ТРИЗ понимается не ка- кой-то произвольный волшебный результат, а вполне четкое и жесткое требование получить требуемую модель эффективного функционирования без неоправданного использования дополнительных, дорогих или трудно получаемых ресурсов.

Здесь следует отметить, что само понятие эффективности является далеко не тривиальным. Более того, эффективность — это сложная эволюционирующая система понятий. Но независимо от способа оценки эффективности рост «идеальности» ТС осуществляется по следующим стратегическим направлениям:

1.Увеличение количества функций, выполняемых системой.

2.Увеличение качества выполняемых функций, представляемое часто в форме роста главного «параметра», например, скорости, мощности, производительности и т. п.

3.Снижение всех видов затрат на создание, применение и ликвидацию системы по окончании срока службы, то есть на интервале жизненного цикла ТС.

4.Снижение негативного воздействия на окружающие системы и среду.

Теперь рассмотрим принятое в системотехнике и в ТРИЗ формальное выражение для оценки эффективности:

Кпозитивным эффектам (факторам) относятся любые оценки целевого назначения системы на интервале их жизненного цикла.

Кнегативным эффектам (факторам) относятся все издержки на получение позитивных эффектов, а также вред, причиняемый окружающей среде или другим системам.

Если цель достигается с большими затратами, решение малоэффективно.

Решение, достигающее цели с допустимыми затратами, признается эффективным, или по крайней мере, удовлетворительным.

Если решение при достижении цели дает дополнительные, не предусмотренные заранее, преимущества, оно считается высокоэффективным. Дополнительное преимущество называется в ТРИЗ «сверхэффектом».

Именно такие решения и называются изобретательскими. И именно такие решения будут интересовать нас в первую очередь.

В большинстве случаев эффективность стремятся оценивать на основе специально составляемых формальных математических функционалов. Так как идеал для этого выражения достигается, если Е стремится к бесконечности, что математически возможно в случаях, когда либо числитель стремится к «бесконечности», либо знаменатель стремится к нулю — а это в реальности может быть принято только условно! Поэтому мы будем применять приведенное здесь выражение лишь как качественную модель, напоминающую нам о том, что нужно стремиться делать знаменатель как можно меньше, а числитель — как можно больше! И именно качественная интерпретация имеется в виду, когда мы говорим о стремлении систем к идеальности.

Разные линии развития системы данного типа в конечном счете сходятся в одну точку — подобно тому, как сходятся меридианы к полюсу! Полюсом для всех линий развития является «идеальная машина»! К «своим» полюсам сходятся обтекаемые формы современных скоростных автомобилей. Не отличимы с первою взгляда российский «ТУ-144» и европейский «Конкорд», российский многоразовый космический корабль «Буран» и американский «Шаттл». Читателю будет полезно продолжить вспоминать подобные примеры.

Обычно, когда задача решается методом «проб и ошибок», поиски идут либо в направлении вектора психологической инерции либо, в лучшем случае, во все стороны. Между тем, приступая к решению задачи, изобретатель может резко сузить сектор поисков. Искомое решение должно приближать его к IM. Это и будет перспективное направление поиска.

Разумеется, в каждом конкретном случае нужно суметь определить IM. Так. грузовой автомобиль, перевозящий 3 тонны груза, весит примерно 1,5 т. Примерно 30% мощности двигателя в этом случае тратится, чтобы перемешать саму конструкцию этого грузовика. Грузовик, рассчитанный на 15 т, весит примерно 5 т. Доля полезной нагрузки на единицу мощности двигателя явно стала выше, а это и приближает машину к «идеальной». Карьерный 140-тон- ный самосвал разгружается за 15 секунд! Это намного меньше времени, необходимого для разгрузки 28 пятитонных машин.

Идеальный вертолет или самолет — это как бы одна летающая кабина. Хотя самолетные двигатели и без того поражают своими относительно малыми раз-

мерами и большой мощностью, позволяющей достигать высоких скоростей полета и большой грузоподъемности самолетов.

Технические системы проходят функциональное развитие и характеризуются большим числом функций. Каждая функция характеризуется показателями, например, скорость, вес, производительность. Два первых показателя являются простыми, а вот производительность является комплексным показателем и может потребовать достаточно сложного определения. Три показателя для ТС являются особыми и основными: эффективность, безопасность и надежность (для военных систем добавляется еще один — живучесть). Эффективность, например, может быть отношением такого параметра как «расход топлива на дистанции в 100 км» к параметру «заданная скорость движения на этой дистанции», т. е. мы получим оценку экономичности автомобиля на единицу заданной скорости.

Один из показателей (параметров) может быть принят в качестве главного (МР — main parameter) — и это не обязательно будет эффективность, например, если речь идет о гоночной машине для установления абсолютного рекорда скорости. Наблюдение за эволюцией систем можно вести по изменению их показателей, т. е. по параметрическому развитию, иногда заменяемому наблюдением только за одним МР. Так, для компьютера — это его скорость вычислений тестовых задач (или рабочая частота при прочих равных условиях — разрядности представления данных, объемах запоминающих устройств, операционной системы и т. п.). Для истребителя — максимальная развиваемая скорость.

Уровень развития ТС часто характеризуют значением МР, график роста которого имеет вид S-кривой (рис. 14.5). Пологий участок 1 означает достижение данным видом ТС пределов своего развития. Кривые 3 характеризуют развитие типов ТС.

Кривые 3 огибают и сглаживают субкривые 2, характеризующие развитие поколений (видов) ТС. С точками (участками) 5 и 4 связывают появление изобретений, создающих (5) или кардинально улучшающих (4) область техники. То есть на S-кривых на рис. 14.5 можно увидеть «расположение» изобретений соответствующих уровней.

Следует отметить, что экономическая эффективность может быть очень велика для изобретений любого уровня. Например, даже небольшие усовершенствования уровня 1 могут быть очень выгодны при массовом производстве. Однако, исключительные преимущества получает владелец изобретений уровней 4 и 5, если сможет реализовать стратегию «новый продукт — первый на рынке».

В качестве примера на рис. 14.6 приведено семейство огибающих S-кривых для роста скоростей транспортных систем.

Машины рождаются слабыми и крепнут постепенно, вбирая в себя многие изобретения. На рис. 14.7 показана двухсотлетняя история функционального развития гребного винта (Г. Альтшуллер). Изобретательская мысль шла тремя разными путями — в качестве прототипов были взяты крылья ветряной мельницы, водоподъемный винт Архимеда и водяное мельничное колесо. Каждый из прототипов развивался усилиями многих изобретателей в разных странах. Однако, три цепи изобретений постепенно сближались и привели наконец к созданию современных гребных винтов.

За любой совершенной технической системой стоят десятки и тысячи последовательно создаваемых изобретений. Даже по такой «системе» как карандаш выдано более 20 000 патентов и авторских свидетельств!!

Каждое изобретение подталкивает развитие системы. В промежутках между толчками система остается неизменной. Нетрудно заметить, что раньше промежутки были длительными, машины совершенствовались медленно (см. рис. 14.7). Путь от идеи и первых экспериментальных образцов до практически применяемого изделия занимал десятки лет.