Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Орлов. Основы классической ТРИЗ

.pdf
Скачиваний:
541
Добавлен:
06.05.2015
Размер:
19.81 Mб
Скачать

Пример 52. Разъем платы. Золотые контакты разъемов некоторых плат обладают очень хорошим (минимальным) контактным сопротивлением, но быстро истираются, так как золото относительно мягкий металл. В результате контактное сопротивление постепенно растет до недопустимого значения, и тогда разъем или плату в целом нужно менять.

Схема, представляющая эту проблему, симметрична относительно контактов штыревой и гнездовой частей разъема (рис. 10.2). Это означает, что обозначения А и В здесь равноправны. Схема соответствует второй модели из таблицы «Функционально-структурные модели»

Рекомендации из правой крайней колонки аналогичны, но их интерпретация исходит из знания физико-химических процессов в контактных парах и доступна, конечно, специалистам:

заменить или изменить вещество одного или обоих компонентов: этого делать нельзя по условиям эксплуатации плат;

внести добавки внутрь или на поверхность компонентов или в среду, в результате исследований было установлено, что включение микродобавок алмаза в золотое покрытие контактов увеличивает контактное сопротивление на 5—10 %, зато долговечность контакта возрастает в 3—5 раз!

изменить характер действия: не вдвигать контакты, чтобы не было истирания от трения, а прижимать их в гнездовой части — не даст эффекта в аппаратуре, устанавливаемой на подвижных системах, работающих в условиях вибрационных и ударных нагрузок.

Пример 53. Медные проводники на микрочипах. Фирма IBM в 1997 году сообщила о возможности замены в микросхемах алюминиевых проводников на медные. Медь лучше проводит ток, и поэтому дорожка шириной в 0,2 микрона заменяет алюминиевую дорожку шириной в 0,35 микрон.

Возникающая экономия места на кристалле позволяет в 3 раза увеличить количество электронных компонентов на чипе, повысить быстродействие и снизить потребление энергии. Однако, атомы меди диффундируют в кремний, изменяя его свойства и нарушая работу схемы.

В принципе эта модель может быть приведена к модели, рассмотренной в предыдущем примере. Но мы рассмотрим более подробную модель (рис. 10.3).

Здесь медный проводник А улучшает функциональные показатели всей системы В, но постепенно изменяет свойства кремниевого основания С, что влечет ухудшение работы всей схемы В. Ближе всего подходит к этой модели структура 5 из таблицы «Функционально-структурные модели». И вновь интерпре-

тация рекомендаций из правой крайней колонки исходит из знания физи- ко-химических процессов в полупроводниковых материалах. Однако механизм решения проблемы универсален и не зависит от отраслевого происхождения задачи!

Главным является сходство моделей — реальной и стандартной, взятой из каталога! И это главное, что мы стремимся показать в этих примерах. Итак. предложено изменить состав, например, ввести ресурс-посредник: между кремнием и медным проводником помещают изолирующую прослойку из материала, состав которого является Know how фирмы IBM. Кстати, полезно также рисовать результирующие модели. Модель для данного примера показана на рис. 10.4 (D — посредник, прослойка). Линии без стрелок означают нейтральные взаимодействия.

Пример 54. Гранулы для сбора нефти. Известны пористые плавучие гранулы, хорошо впитывающие нефть. Такие гранулы можно разбрасывать на поверхность нефтяных пятен, образовавшихся при утечке нефти из поврежданных танкеров. Проблема состоит, однако, в том, что гранулы легко разносятся ветром и волнами.

Вполне понятно, что мы имеем здесь дело с моделью 5 — неэффективное или отсутствующее действие (рис. 10.5). Представим себе идеальный конечный результат: гранулы А и В сами держатся друг за друга и не разносятся по воде.

Речь может идти о совмещении двух стандартов решения этой проблемы: SI (введение добавок) и S2 (повышение управляемости) — создание нужного действия за счет введения полей. Просмотр двух компакт-стандартов вполне ясно позволяет получить контрольное решение: в гранулы вводятся намагниченные частицы, в результате чего гранулы достаточно прочно притягиваются друг к другу. Здесь присутствует сверхэффект: такие гранулы помогают удерживать нефтяное пятно от рассеивания по большей поверхности.

Пример 55. «Бронированная» бутылка. Стеклянные бутылки не создают никаких негативных воздействий на хранимые жидкости. Они могут использоваться многократно, несколько десятков раз. Однако, они имеют большой вес и могут разбиваться. Достаточно полная модель свойств стеклянной бутылки А содержит (рис. 10.6) позитивное воздействие на хранимую жидкость В и потенциальные негативные воздействия на условную транспортную систему С (большой вес для перевозки) и окружающую среду D (если бутылка разбивается).

Конкурирующие полимерные бутылки могут при длительном хранении оказывать негативное воздействие на содержимое, например, на запах хранимой в них воды. Их преимуществом является малый вес и то, что они не разбиваются. Недостатком является и то, что они не используются повторно. Для этой системы можно построить модель (рис. 10.7), которая по всем параметрам является альтернативной системой по отношению к стеклянной бутылке.

Для стеклянной бутылки речь может идти о се развитии как системы путем приобретения дополнительной функции — повышения прочности, но с одновременным снижением веса, что несет в себе острейшее классическое противоречие. Более прочная бутылка должна иметь более толстые стенки, а значит

будет иметь еще больший вес. Однако, к постановке проблемы формально подходит стандарт S4.3 Увеличить функциональную нагрузку на систему и ее части.

Для полимерной бутылки подходит как этот же стандарт, так и рекомендация о введении добавок, например, на внутреннюю поверхность полимерной бутылки для устранения непосредственного контакта полимерных материалов с хранимой жидкостью.

К обеим системам подходит и стандарт S4.1 Использовать объединение объекта

сдругой системой в более сложную биили полисистему. Такое объединение особенно выгодно делать именно для альтернативных систем, с которыми мы

ивстретились в данном примере (подробности см. в разделе 15.3 Интеграция альтернативных систем).

Такая бисистема и была создана в Дюссельдорфе (Германия): новая стеклянная бутылка покрыта «броней» из прозрачной полиуретановой пленки толщиной 0,1 мм. При той же прочности толщина стенок бутылки стала намного меньше (1,4 мм). Упаковка с 6 литровыми бутылками весит на 3,5 кг меньше, чем с прежними стеклянными бутылками! А пивная бутылочка на 0,33 литра вдвое легче своего прототипа. Даже если такая бутылка разбивается, осколки остаются как бы в пластиковом пакете и не разлетаются! Бутылка может использоваться до 70 раз, а потом поступает на переплавку.

Пример 56. Бритва Жиллет. Бритвы прошли большой путь развития. Однако остановки в прогрессе не видно. При этом сделать в старых системах что-то новое и престижно, и выгодно. Ну что, казалось бы, можно придумать нового в станке для бритья? Тем более, что структурная модель оказывается не слишком информативной (рис. 10.8).

Для чистого срезания волос приходится делать многократные движения, что увеличивает время бритья. Поэтому основную стрелку можно представить прерывистой линией (неэффективное действие). Волос негативно действует на лезвие, постепенно притупляя его, что также снижает эффективность основного действия.

Здесь мы имеем комбинацию моделей 1 и 6. А в целом речь может идти о развитии функциональной нагрузки на режущую часть бритвы. В этом случае нужно начинать с интерпретации стандарта S4, например, с рекомендации образования биили полисистем. Что и было сделано на фирме Жиллет: новый станок имеет три параллельно расположенных лезвия, сдвинутых на оптимальный шаг также и по высоте, что обеспечивает за один проход срез волоса до трех раз на разных уровнях. Сверхэффекты: сокращение числа прохо-

дов, а значит, и времени на бритье, увеличение срока службы бритвы. Этот пример полезно переработать самостоятельно с учетом влияния упругости волоса (на разной высоте от его основания) на успешность резания одним лезвием, а затем двумя или тремя.

Пример 57. Стадион «Франция». Трибуны легкоатлетического и футбольного стадиона «Франция» в Сен-Дени (северный пригород Парижа) сверху защищены навесом в виде горизонтального диска с отверстием в центре (рис. 10.9). Диск удерживается вантами на 18 стальных мачтах почти на 50-метровой высоте. При проектировании необходимо было принять меры, чтобы шум со стадиона не мешал жителям ближайших кварталов. Модель функционального взаимодействия компонентов имеет следующий вид (рис. 10.10). Действительно, навес А защищает зрителей В от непогоды и солнца, но шум с трибун отражается навесом А и распространяется на соседние кварталы С.

Реинвентинг показывает, что модель по рис. 10.10 как бы состоит из моделей 1 и 5, поэтому можно начинать со стандарта S1, например, введение добавок по рекомендациям S1.2 и S1.5. Контрольное решение: для поглощения звуков в отделке внутренней части диска используется минеральная вата.

Пример 58. Бетонные конструкции. Здесь мы рассмотрим несколько различных изобретений, в основе которых лежат различные способы введения «добавок». Более того, сами «добавки» не имеют между собой ничего общего. Именно это и показывает универсальный характер моделей ТРИЗ и возможность их широкого применения практически в любой отрасли. ТРИЗ-модели — это модели мышления, именно изобретательного мышления, а не модели специальных профессиональных знаний или процессов каких-то промышленных технологий. Модели ТРИЗ имеют междисциплинарный и межотраслевой характер. Это модели, полученные из изобретений, и для создания новых изобретений. Это полезные модели для постоянного применения в инженерной проектной или управленческой практике.

Связь четырех изобретений и их комбинаций будет легче понять из схемы (рис. 10.11). В этих нескольких примерах содержатся те или иные рекомендации из всех пяти компакт-стандартов.

Бетон с диоксидом углерода. Бетонные шпалы на японских сверхскоростных железнодорожных линиях выдерживают лишь около трех лет, после чего их нужно менять. Понятно, какой значительный экономический эффект способно дать удлинение срока службы бетонных изделий.

Прочность бетона в естественных условиях растет со временем из-за реагирования с диоксидом углерода (углекислым газом), содержащимся в воздухе, в результате чего бетон превращается в известняк. Но этот процесс длится тысячелетия! Так что детали под нагрузкой успевают быстро разрушиться. Бетон для шпал имеет очень маленькие поры. Он не набирает быстро своей прочности потому, что образующаяся при реакции с первыми порциями диоксида углерода вода заполняет поры и закрывает доступ новых порций газа в толщу изделия. Для ускорения этого процесса изделия помещали в камеры с повышенным давлением, но это мало помогло.

В 1994 году американский инженер Р.Джонс изобрел способ упрочнения бетона с помощью так называемого сверхкритического диоксида углерода, получаемого при давлении выше 73 атмосфер и при температуре свыше 31 °С. В этих условиях диоксид углерода становится жидкостью с высокой проникающей способностью и полностью пропитывает изделие. Тысячелетнее упрочнение бетона стало возможным за несколько минут!

Прочность такого бетона возрастает вдвое! В новом способе упрочнения бетона обнаруживаются два сильнейших сверхэффекта. Во-первых, в изделиях, полученных по новому способу, исключается ржавление стальной арматуры внутри изделий, что часто становится причиной недопустимого снижения прочности конструкций. Во-вторых, получен замечательный экологический эффект, настоящее обращение вреда в пользу (см. рис. 8.8 с рекомендациями по выбору ресурсов). Цемент, входящий в состав бетона, делают из карбонатных пород, обжигая их в цементных печах. При этом в атмосферу выбрасывается огромное количество углекислого газа как из обжигаемых горных пород, так и от сжигаемого ископаемого топлива. Новый процесс упрочнения бетона поглощает много диоксида углерода и тем самым значительно компенсирует вред, наносимый природе.

Реинвентинг показывает, какие стандартные рекомендации и каким образом фактически присутствуют здесь:

S1.4 — дополнительное вещество может быть производным от веществ, уже имеющихся в системе: изменению подвергался уже применявшийся ранее диоксид углерода;

SI.8 — вводят обычную добавку, но располагают ее концентрированно: изменение состояло в многократном увеличении концентрации обычной добавки;

S1.11 — вещество получают изменением агрегатного состояния части объекта или внешней среды: увеличение концентрации достигнуто изменением агрегатного состояния применявшейся ранее добавки: газ диоксид углерода был переведен в жидкое состояние;

S2.1 — превратить часть объекта в управляемую систему: сверхкритический диоксид углерода обладает гораздо более управляемыми свойствами, чем газообразный;

S2.4 — использован фазовый переход вещества;

S4.2 — ускорить развитие связей между частями системы: увеличена интенсивность воздействия диоксида углерода на бетон.

Цель этого примера состоит в том, чтобы Вы могли проследить формирование идеи решения и понять принцип, с помощью которого и Вы, будучи специалистом в своей отрасли, можете изучать и подбирать эффективные стандартные рекомендации для своих задач. Главное состоит в том, чтобы подбор рекомендаций осуществлялся на основании содержания проблемы, а не путем сплошного просмотра стандартов, хотя и это в крайнем случае возможно. В любом варианте полезен следующий совет: просматривать рекомендации надо так, чтобы было время понять и интерпретировать их применительно к условиям решаемой задачи.

Пористый бетон. Широкое распространение в строительстве имеет так называемый пористый бетон с размерами воздушных пор диаметром до 3 мм. Поры могут занимать до 90 % объема материала. Поробетон обладает многими достоинствами: малый вес, отличные теплозащитные свойства с одновременной паро- и воздухопроницаемостью (сравнимыми с бревенчатыми конструкциями), негорючесть и нетоксичность, возможность свободно забивать в него гвозди, пилить и сверлить. Но производство такого бетона требует дорогостоящего оборудования (автоклавы, пеногенераторы. помольные агрегаты) и больших энергозатрат. К тому же поры имеют большой разброс размеров и недостаточно равномерно распределяются в объеме изделия.

Институт бетона и железобетона в Москве (Россия) разработал технологию на основе специальных химических добавок, которые создают поры определенного размера, равномерно распределенные в объеме изделия без применения указанного сложного и энергоемкого оборудования.

В учебных целях здесь достаточно определить, какие стандарты присутствуют в этом изобретении. Прежде всего отметим, что само по себе введение пор в вещество есть реализация стандарта S1.5. Далее, ключевую роль здесь сыграл стандарт S1.10 — вещество вводят в химическом соединении, из которого оно выделяется в нужное время. Но не менее важно обратить внимание на стандарт S5.3 — использовать возможность реализации функций системы на микроуровне (на уровне вещества или/и полей): здесь мы имеем пример мощного свертыва-

ния системы — исключено дорогостоящее, энергоемкое и неэффективное оборудование!

Гибкий бетон. Тот же институт в Москве разработал технологию производства железобетонных... гибких плит! Они пригодны для формирования криволинейных поверхностей, в том числе для наружных стен, при лом между гибкой плитой и основной стеной может закладываться тепло- и гидроизолирующая прослойка.

Обычная железобетонная плита негибкая из-за жесткой арматуры, для которой используются стальные стержни. Фактически, в такой задаче целью является повышение функциональных возможностей объекта (развертывание по стандарту S4.3), использование возможности распределения несовместимых свойств между всей системой, наделяемой свойством гибкости, и частью этой системы (поверхностью изделия), наделяемой антисвойством — твердостью (свертывание по стандарту S5.2) и превращение части объекта (вещества) в управляемую систему — введение особой арматуры и способа ее получения (повышение управляемости по стандарту S2.1).

Гибкость плит достигается тем, что в качестве арматуры используются предварительно натянутые высокопрочные стальные канаты, а процесс получения готовой пластины включает дополнительное уплотнение смеси и специальную многочасовую термовлажностную обработку. В итоге по новой технологии получают легкие и прочные плиты толщиной 3—6 см при ширине до 3 м и длине в 12, 18 и 24 метра (рис. 10.12)!

Бетон с датчиками напряжения. Для испытания строительных конструкций создают специальные образцы железобетонных изделий. Для измерения внутренних напряжений в конструкции применяется сеть тензометрических датчиков, закладываемых вместе с арматурой в бетонную массу при изготовлении опытных образцов. Здесь прямо использован стандарт S3.4 — использовать возможность введения добавок в уже имеющиеся вещества (включая внешюю среду) и/или на поверхность объекта для получения легко обнаруживаемого (измеряемого) поля, по которому молено судить о состоянии наблюдаемого объекта. Такое же решение может быть применено в реальных строениях (стены и фундаменты высокоточных производств, строения в сейсмически опасных регионах, мосты, высотные здания и телерадиокоммуникационные башни) для постоянного наблюдения за их деформациями

Комбинирование идей. Хорошее решение влечет за собой обычно целую серию новых идей (см. также раздел 17.2 Развитие решения). Так. например, для раз-

вития идеи обработки бетона сверхтекучим диоксидом углерода были предложены следующие продолжения.

Краска плохо проникает в поры плотного бетона и плохо защищает конструкцию от проникновения влаги. Если же при производстве строительных конструкций окрашенное изделие обрабатывается сверхтекучим диоксидом углерода, то краска плотно заполняет мельчайшие наружные поры и даже проникает достаточно глубоко под поверхность изделия. Последний результат образует сверхэффект: возрастает долговечность самой краски. Здесь присутствуют стандарты Sl.l, S1.2, S1.8, S2.1, S4.1, S5.3. Рассмотрите их совместно применительно к этому примеру.

Эти же стандарты работают в следующей комбинированной идее: вносить в бетон с помощью сверхтекучего диоксида углерода хорошо растворимые в нем вещества, например, полимеры. В результате бетон приобретает свойство упругости, что может быть полезным для создания дорожных покрытий.

Жидкий диоксид углерода достаточно устойчив, что позволяет применять его для обработки поверхностей уже существующих строений. С его помощью можно обеспечить высококачественную окраску гибких бетонных пластин большого размера. Это сделает строения более устойчивыми к воздействию кислотных дождей и естественных атмосферных явлений.

В заключение можно сделать некоторые дополнительные выводы. Несмотря на кажущуюся простоту, а иногда и тривиальность рекомендаций, заключенных в формулировках стандартов, надо иметь в виду, что они все же являются моделями достаточно сильных изобретений, и что их выбор для конкретного применения может дать искомый эффект без построения более сложных моделей. Еще более сильные результаты могут быть получены при совместном применении стандартов с законами и линиями системного развития. И последнее: модели не заменяют профессиональных знаний, а помогают структурировать проблемную ситуацию и наметить направление решения.

На практике встречается немало случаев, когда сама формулировка противоречия почти прямо подсказывает идею решения. Поскольку инженеры, не знакомые с ТРИЗ, не используют модели противоречий в том виде, в котором это предлагает ТРИЗ, постольку они заранее лишены возможности быстро находить простые и эффективные решения во многих таких стандартных ситуациях. Напротив, систематическое применение ТРИЗ-моделей обеспечивает высокую направленность и дисциплину решения проблем, умение видеть реальные возможности или ограничения на генерирование решений.

Особенно наглядно это можно показать именно на простых примерах, решение которых без ТРИЗ-моделирования также потребовало когда-то немалого времени или было приятной случайной находкой. К числу таких примеров относятся ситуации, в которых совместное рассмотрение инверсных противоречий почти прямо подсказывает идею решения. Это особенно свойственно моделям, инверсным по способу выполнения основной операции, непосредственно ведущей к реализации главной полезной функции объекта.

На основе подобных примеров в 1987 году автором настоящего учебника был сформулирован Метод интеграции инверсных технических противоречий. Суть его сводится к следующему:

построить прямое и инверсное технические противоречия;

построить интегрированную модель, в которой соединены вместе альтернативные описания функциональных действий экторов и из взаим- но-инверсных моделей взяты только позитивные свойства (плюс-фак- торы).

Посмотрите еще раз определения противоречий в разделе 9.1 Противоречия, в частности по рис. 11.1 Обобщенная графическая форма представления бинарных противоречии.

Пример 59. Виноградная лоза (решение с помощью интеграции инверсных технических противоречий). В этом примере имеется одна интереснейшая возможность решить задачу уже при построении моделей противоречий на этапе Редукция. Рассмотрим эту возможность, начиная с записи инверсных противоречий (рис. 11.1).