Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Орлов. Основы классической ТРИЗ

.pdf
Скачиваний:
541
Добавлен:
06.05.2015
Размер:
19.81 Mб
Скачать

3)Выписать все рекомендуемые приемы.

4)Составить ранжированный список, в котором на первом месте будет наиболее часто рекомендуемый прием, на втором — с меньшим рейтингом

ит. д. (это и есть процедура Cluster Out, когда мы получаем как бы гроздь приемов на выходе, где «наверху» грозди будет наиболее часто встречающийся прием, «пониже» - менее встречающийся и т. д.).

5)Провести последовательный анализ приемов, начиная с первою. Рассмотрим один пример на «ретро-тему».

Пример 71. «Крышка» над дымоходом. Чтобы в печные трубы сверху на попа-

дали дождь и снег, над трубами сооружают различные навесы, козырьки или крышки (назовем их закрывалками).

Диагностика. Проблема состоит в том, что закрывалки с часто встречающейся формой, приведенной на рис. 11.14, неудовлетворительно защищают дымоход от снега и от дождя, особенно при достаточно сильном ветре. Более сложные по форме закрывалки часто сужают поперечное сечение на выходе дымохода и затрудняют выход дыма.

Рис. 11.14. Крышка нал дымоходом

Редукция. Как минимум, здесь имеет место двойное физическое противоречие: закрывалка должна быть широкой и находиться близко к выходу трубы (чтобы надежно защищать трубу от дождя и снега при любом направлении ветра), и закрывалка должна быть узкой (чтобы сильный ветер не срывал закрывалку) и находиться далеко от выхода трубы (чтобы дым свободно вылетал из трубы). Оперативная зона здесь включает выход дымохода (рецептор) и закрывалку (индуктор). Менять, понятно, будем закрывалку. Очевидной идеи нет. Поэтому можно сформулировать более одной ФИМ.

Макро-ФИМ: Х-ресурс, не вызывая недопустимых негативных эффектов, обеспечивает вместе с другими имеющимися ресурсами надежную защиту выхода трубы от осадков при любом направлении ветра и наилучшим образом выпускает дым.

Макси-ФИМ: оперативная зона сама обеспечивает защиту выхода трубы и свободный выход дыма.

Анализ фундаментальных трансформаций (раздел 12.2) на первый взгляд также не дает очевидной идеи, хотя можно сказать, что здесь явно являются

«заинтересованными» пространственный, структурный и энергетический ресурсы. Нужно предполагать изменения в форме закрывалки и в структуре — возможно появление более сложной конструкции с несколькими функцио- нально-специализированными частями. Нельзя исключать, что потребуется источник энергии для приведения закрывалки в действие. Здесь Вы можете задать справедливый вопрос: а как же с требованием «абсолютно не усложняя систему»?! Первая часть ответа: посмотрим в конце решения — например, может оказаться, что по затратам материалов и стоимости новая конструкция будет ненамного превышать имеющуюся закрывалку, которая вообще не соответствует предъявляемым требованиям. Вторую часть ответа дал еще Альберт Эйнштейн65': должно быть «Просто, но не проще простого!». То есть, если некая конструкция не решает поставленную задачу, то ее простота или низкая стоимость не имеют никакого значения.

Попробуем построить технические противоречия, чтобы несколько отойти от жесткой формулы физического противоречия — но не от ФИМ! Наоборот, мы должны и будем цепко держаться за ФИМ!

Представим ИКР-1 в самом общем виде как устранение «Вредных факторов, действующих на объект» и используем этот ИКР как плюс-фактор № 13 для соответствующего входа в А-Матрицу. Вдоль 13-й строки выберем подходящие минус-факторы (см. таблицу на рис. 11.15).

Представим ИКР-2 как «Степень автоматизации» и используем этот ИКР как плюс-фактор № 03 для соответствующего входа в А-Матрицу. Вдоль 03-й строки найдем хотя бы один подходящий минус-фактор (см. таблицу на рис. 11.16). Пусть решением проблемы будет ИКР-3 в виде некой идеальной «Формы». Тогда вдоль 21-й строки А-Матрицы выберем вероятные ми- нус-факторы (см. таблицу на рис. 11.17).

Трансформация. При объединении 17 различных приемов из этих таблиц найден один прием (№ 07) с рейтингом 3, пять приемов с рейтингом 2 и 11 приемов с рейтингом 1. В таблице на рис. 11.18 представлены шаги решения проблемы, а на рис. 11.19 — результат проведенного реинвентинга решения, которое я впервые увидел в Германии. Я назвал эту закрывалку «шлем»

65 Альберп Эйнштейн (1879—1955) — выдающийся физик XX столетия, создатель обшей и специальной теории относительности.

из-за сходства с рыцарским шлемом по форме, благодаря чему осадки не попадают в трубу и при отсутствии ветра. Позже я встречал его, например, в Финляндии.

Верификация. Получено вполне идеальное решение: закрывалка сама наилучшим образом выпускает дым и надежно защищает трубу от осадков при любом направлении ветра!

В этом решении, изобретенном неизвестным мастером, можно увидеть сразу букет изобретательских приемов: динамизация — «шлем» сделан подвижным; локальное качество — «шлем» защищает именно там, где нужно; асимметрия — флюгер имеет вынесенный хвост, на который и воздействует ветер; матрешка — ось вращения размешена внутри трубы; вред обратить в пользу и самоорганизация — чем сильнее ветер, тем надежнее «шлем» устанавливается в наилучшее положение.

Полученная конструкция не намного сложнее исходной, а ее преимущества несравненно выше!

В хорошем решении всегда объективно реализованы несколько творческих идей. Поэтому так важно изучать методом реинвентинга ранее сделанные изобретения, чтобы увидеть не зависящие от воли изобретателя объективные идеи преобразования от «было», то есть «от существующего», к «стало», то есть «к возникающему»!

Итак, мы можем сказать, что отдельные приемы как бы предлагают нам искать решение задачи «за один ход», как в одноходовой шахматной миниатюре. Однако, сложные задачи — это как минимум трех-, четырех- и пятиходовки! А то и целые блестящие партии! И поэтому «грозди» приемов ориентируют на

разработку многоходовых комбинаций, тем более что в реальной изобретательской задаче никто заранее не знает, за сколько ходов она решается.

Мы видим, что при совместном рассмотрении приемов они как бы усиливают возможности друг друга.

Возникает сверхэффект — синергия приемов!

Ранжированная «гроздь» приемов как бы описывает и предсказывает облик будущего решения, связывая идеальный конечный результат с новым, еще искомым, принципом действия и с будущей конструкцией.

Ключевая идея метода аналогична интеграции технических противоречий, а именно, соединить несовместимые требования, исходя из непосредственного описания модели противоречия. Но для физического противоречия это сделан, сложнее, так как в нем несовместимость выглядит более непримиримо и остро. Описание физического противоречия часто нефункционально, то есть содержит не инверсные способы действия, а инверсные и несовместимые свойства - состояния . Поэтому в Методе интеграции физических противоречий, предложенном автором учебника в 1989 году, имеются существенные отличия от Метода интеграции инверсных технических противоречий.

Метод интеграции физических противоречий требует явного разрешения противоречия по доминирующему ресурсу. А для этого требуется творческое, интуитивное усилие и профессиональное знание физико-технических эффектов и конструкций, пригодных потенциально для достижения такого решения.

Шаги метода формулируются следующим образом:

сформулировать физическое противоречие с двумя несовместимыми требованиями (факторами);

редуцировать исходную модель к конструктивной форме, в которой оба фактора представлены как целевые, позитивные;

• разделить конструктивную модель на две модели — для одного фактора и для другого фактора; найти независимые альтернативные технические решения для каждого из факторов;

• построить интегрированную модель на основе интеграции независимых альтернативных технических решений для каждого из факторов, в которой физическое противоречие отутствует и достигаются оба несовместимые ранее свойства.

Примечание 1: физическое противоречие нужно стремиться сразу формулировать в конструктивном виде, что и рекомендуется в классической ТРИЗ. при этом возможно исключение первого шага метода.

Примечание 2: разделение модели противоречия на две — это только прием для описания процесса генерации идеи решения, так как при определенном

опыте интегрированное решение находится непосредственно по конструктивной модели, при этом возможно исключение третьего шага метода.

Здесь также нет какой-то магической формулы, а дело заключается в разделении конфликтующих свойств во времени, в пространстве, в структуре или в веществе (энергии) — см. следующий раздел 12.2 Каталоги фундаментальных трансформаций. Но интеграция разделенных моделей одного и того же исходного физического противоречия позволяет преодолеть психологическую инерцию отношения к проблеме, строит мост к созданию идеи решения, в которой «несовместимые» до этого свойства прекрасно сосуществуют и работают для обеспечения главной полезной функции системы.

Для интеграции разделенных моделей в дальнейшем будет полезно также изучение раздела 15.3 Интеграция альтернативных систем.

Рассмотрим примеры в привычном порядке — от «простых» к более сложным.

Пример 72. Нагрев кремниевой пластины (решение на основе интеграции физи-

ческих противоречий). В примере 60 мы достаточно легко соединили вместе инверсные процессы нагрева кремниевой пластины. Это произошло соединением инверсных действий по нагреву пластины в центре и на краях. При интеграции несовместимых физических моделей это сделать несколько сложнее, так как нужно обнаружить и реализовать трансформацию, не очевидную, не лежащую на поверхности, — разрешение конфликта в пространстве и в структуре. Причем сначала из исходного физического противоречия выделяются требуемые, но противоречивые состояния, затем условно устанавливается возможность их независимой технической реализации, после чего возможна интеграция альтернативных технических решений в одной конструкции, например, за счет изменения структуры индуктора для реализации требуемых свойств в непересекающихся зонах в пространстве.

Выполним последовательно шаги Метода интеграции физических противоречий:

1) построим исходную модель физического противоречия: тепловое поле должно быть сильным, чтобы нагревать пластину по краям, и не должно быть сильным, чтобы не перегревать пластину в центре;

2)редуцируем исходную модель к конструктивной форме с позитивными несовместимыми свойствами: тепловое поле должно быть сильным, чтобы нагревать пластину по краям, и должно быть слабым, чтобы нагревать пластину в центре;

3)технические решения для каждой из раздельных моделей: в индукторе для сильного теплового поля должна быть большая плотность витков нагревающей спирали, а в индукторе для слабого теплового поля должна быть малая плотность витков нагревающей спирали;

4)интеграция этих альтернативных решений приводит к контрольному решению, которое Вам уже известно из примера 60: количество витков спирали в центре нагревательного элемента делается меньше, чем на краях.

В этом решении спираль нового (интегрированного) нагревательного элемента приобрела неоднородную структуру, чтобы обеспечить требуемые условия нагрева в разных пространственных зонах.

Пример 73. Две шляпки одним ударом. При производстве некоторых изделий забитый гвоздь нужно извлечь. Это характерно для тех случаев, когда гвоздь используется как элемент для временного, вспомогательного соединения деталей, после чего он должен быть удален. Это не просто сделать, не повреждая материал, в котором находится гвоздь, особенно шляпка гвоздя. В материал вдавливают острые концы специальных плоскогубцев или какой-нибудь острый и прочный предмет, чтобы зацепиться за шляпку, плотно прижатую к поверхности изделия, а иногда и полностью утопленную в материал.

Выполним реинвентинг одного интересного решения, созданного на Украине.

Построим модель проблемной ситуации в виде исходного физического противоречия.

Редуцируем исходную модель к конструктивной форме и разделим сразу на две независимые модели (обратите внимание на почти незаметные, но полезные отличия, которые мы показываем здесь в учебных целях).

Теперь мы может видеть два независимых решения: первое — гвоздь забивается как обычно, и его шляпка прижата к поверхности изделия или даже утоплена в этой поверхности; второе — гвоздь забит так, что между нижней частью его шляпки и поверхностью изделия есть зазор, достаточный для того, чтобы можно было легко вытащить гвоздь, зацепившись за его шляпку.

Вот теперь требуется преодолеть психологическую инерцию и соединить оба решения в одно, изобрести гвоздь, интегрирующий оба несовместимые состояния. Контрольное решение: гвоздь имеет две шляпки (рис. 12.1), расположенные одна над другой с зазором, достаточным для извлечения гвоздя. Нижняя шляпка прижимает изделие, а верхняя служит только для вытаскивания гвоздя.

Доминирующий ресурс — функционально-структурный, так как изменено количество элементов объекта, при этом каждый элемент выполняет свою специализированную функцию. Вспомогательные ресурсы — пространственный, так как изменена форма объекта; временной — новые части объекта используются на различных непересекающихся интервалах времени; вещество — увеличилось количество материала в конструкции гвоздя.

При наличии интереса Вы можете провести более детальную верификацию идеи решения, оценив в учебных, а может быть и в профессиональных, целях преимущества и недостатки такого решения.

Пример 74. Сейф с двойным дном на пляже. Для того, чтобы ветер или зло-

умышленник на пляже не унес Ваши вещи и ценности, нужно найти ка- кое-то техническое решение, опираясь на легко доступные ресурсы. Здесь приведем решение по сокращенному варианту с учетом примечаний 1 и 2 к шагам метода.

Предположим, что Вы приходите на пляж с некоей конструкцией, назовем ее чемодан, сейф или холодильник, как Вам понравится. Оттуда Вы извлекаете надувной матрац и тент, туда Вы укладываете снятую одежду, деньги и документы, а заодно, возможно, там находятся принесенные Вами напитки, книги и игры.

Выполним только два шага метода для этой конструкции (я выбираю название «сейф»):

2) сейф должен быть легким (для транспортировки) и должен быть тяжелым (чтобы его не мог унести ветер или злоумышленник) — представьте себе один легкий сейф для транспортировки Ваших вещей и другой тяжелый, стоящий на пляже, в который Вы вставляете принесенный легкий сейф, и получается как бы двойной сейф, по крайней мере с двойными стенками;

4) теперь нужно из двух конструкций сделать одну: пусть теперь единственный носимый интегрированный сейф сам имеет двойные стенки, например, двойное дно, пространство между которыми Вы заполняете песком, галькой или даже водой, легко доступными на пляже. Именно такова идея «песчаного сейфа», запатентованная изобретателем из Великобритании.

Доминирующий ресурс — вещество, изменение веса сейфа путем присоединения к нему внешнего материала. Использованные или принимаемые во внимание вспомогательные ресурсы: структура и пространство — сейф имеет двойные стенки и запирающийся на замок вход (выход) для заполнения пространства между стенками нагрузкой; временной — сейф имеет разный вес на непересекающихся интервалах времени.

Этот объект может иметь интересное развитие.

Исключительная роль, которую играют модели физических противоречий при решении изобретательских задач, объясняется их «положением» в оперативной зоне. Физическое противоречие — это предельно острое выражение сути проблемы, это центральная точка любой оперативной зоны.

В то же время Вы уже могли убедиться, в том числе и на вышеприведенных примерах, что и для физических противоречий есть подходы и модели трансформации, облегчающие генерацию новых идей. Этому же служат и А-Ката- логи № № 5—7 с приемами и стандартами на решение физических противоречий.

Основной, хотя и совсем небольшой, Каталог 5 Фундаментальные трансформации иллюстрируется ниже рисунками 12.2—12.5. Здесь необходимо сделать небольшие пояснения к некоторым из этих иллюстраций.

Большинство примеров иллюстрируют определенный доминирующий ресурс, например, пространственный или временной, соответствующий основной трансформации. Но при реализации трансформации оказываются задействованы и другие ресурсы, причем нередко не менее кардинально. Поэтому некоторые примеры могут одновременно хорошо иллюстрировать и другие трансформации.

Рассмотрим иллюстрации к фундаментальным трансформациям в качестве примеров и упражнений на формулирование физических противоречий. а также на анализ примененных ресурсов.

Пример 75. Фундаментальные трансформации в пространстве. Примеры моде-

лей и решений физических противоречий к рисункам 12.2:

а) Автомобили, выезжающие на перекресток дорог, пересекающихся в одном уровне, могут сталкиваться, и они не должны сталкиваться во избежание жертв и материального ущерба.

Решение: разнесение дорог на разных уровнях с помощью мостов или тоннелей (доминирующий ресурс — пространственный).