Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.doc
Скачиваний:
29
Добавлен:
14.04.2015
Размер:
5.85 Mб
Скачать

31. Механические модели деформации биологических сред (модель Максвелла)

Вязкоупр св-ва тел (сочет вязкого теч и выс эластичности) моделир с-ми, сост из разл комб двух простых э-тов: 1) пруж (упр эл-т) и 2) поршня с отверст, движу в цилиндре с вязкой жидкостью(вязкий элемент). В модели Максвелла упругий и вязкий элементы соед послед. Напр в каждом эл-те явл одинак. В люб мом вр для деформ выполняется условие

Реше этого ур-ия привод к след х-ру разв деформ. В момент t=0 пруж мгн растяг, а затем начин линейное нараст деформ, связ с движ поршня. В момt1 пруж сокращ до нач размера, а поршень ост - имеет место остаточн деформ.

С помощью модели Максвелла можно моделировать следующие мех проц.

Релаксация напряж в материале: ε = const, dε/dt = 0, т.е. поддерж пост деформ. В этом случае из уравнения (6.10) следИнтегр послед выраж от нач мом врем и нач напряж σо до текущ зн t иσ, получаем выражение, описывающее изменение напряжения со временем, т.е. релаксацию напряжения:

т.е. под действием постоянной приложенной силы происходит вязкое течение (поршень движется с постоянной скоростью).

При изучении свойств волос используют явление релаксации напряжения в них. Этот процесс аппроксимируют моделью, состоящей из 4 параллельно соединенных моделей Максвелла.

Модель Кельвина-Фойгта

Модель Максвелла не учитывает упругости, отличной от той, которая подчиняется закону Гука, т.е. упругости, возникающей за счет раскручивания макромолекул (высокоэластичности). Основной особенностью этого вида упругости является необходимость известного промежутка времени для ее развития (аналогия - деформация пружины в вязкой среде). Такая «запаздывающая» упругая реакция представляется моделью Кельвина-Фойгта, в которой пружина и поршень соединены параллельно (рис. 6.19, г). Величина удлинения одинакова для обоих элементов. При воздействии внешней силы общее напряже-

Модель Зинера

В материалах реализуются разные виды деформаций: упругая обратимая (модель - пружина), вязкоупругая обратимая (модель Кельвина-Фойгта) и необратимая (модель - поршень). Сочетание трех моделей, рассмотренных выше, позволяет создавать модели, наиболее полно отражающие механические свойства тел и, в частности, биологических объектов.

Примером такой модели является модель Зинера, которая состоит из последовательно соединенных упругого элемента и модели Кельвина-Фойгта.. При действии постоянной нагрузки мгновенно растягивается пружина 1, затем вытягивается поршень и растягивается пружина 2, после прекращения нагрузки происходит быстрое сжатие пружины 1, а пружина 2 втягивает поршень в прежнее положение; остаточная деформация отсутствует.

Поведение костной ткани в первом приближении описывается моделью Зинера. Упругая деформация реализуется за счет минерального вещества, а ползучесть - за счет коллагена.

32. Электрические заряды и их взаимодействие

Электр заряд – это физ велич, кот опр интенс электромагн вз-ий. Электромагн вза-ия – это вз-ия между заряж частицами или телами. Электр заряды делятся на полож и отриц. Полож зар обл стаб элемент частицы – протоны и позитроны, а также ионы атомов металлов и т.д. Стаб носителями отриц зар явл электрон и антипротон. Суще электр незаряж частицы, т.е. нейтр: нейтрон.В электр вз-ях эти частицы не уч, тк их электр зар=0. Бывают частицы без элект заряда, но электр заряд не сущ без частицы. На стекле, потёртом о шёлк, возникают полож заряды. На эбоните, потёртом о мех – отриц заряды. Частицы отталк при зар одинак знаков (одноим заряды), а при разн знаках (разноим заряды) частицы притяг. Все тела сост из атомов. Атомы сост из положит заряж атомного ядра и отриц заряж электр, кот движ вокруг ядра атома. Атомное ядро сост из положит заряж протонов и нейтр частиц – нейтронов. Заряды в атоме распред таким образом, что атом в целом явл нейтр, то есть сумма полож и отриц зарядов в атоме=0. Электр и протоны вх в состав любого в-ва и явл наименьш устойч элем частицами. Эти частицы могут неогранич долго сущ в своб сост. Электр заряд электр и протона наз элемент зарядом. Элемент заряд – это мин заряд, кот обл все заряж элемент частицы. Электр заряд протона равен по абс вел заряду электрона: е = 1,6021892(46) * 10-19 Кл

Силы вз-ия неподв зар прямо пропорц произв модулей зар и обратно пропорц квадр расст между ними: Силы вз-ия подчиняются третьему закону Ньютона: Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:  где  – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Самое простое и повседневное явление, в котором обнаруживается факт существования вприроде электрических зарядов, — это электризация тел при соприкосновении. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо

Электрический заряд замкнутой системы сохраняется во времени и квантуется — изменяется порциями, кратнымиэлементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона. Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системысохраняется. Закон сохранения заряда выполняется абсолютно точно.

34 Электрическая ёмкость

Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциаловмежду этими проводниками.

В Международной системе единиц (СИ) ёмкость измеряется в фарадах, в системе СГС — всантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид где Q — заряд,  φ — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара (или сферы) радиуса R равна (в системе СИ):

где ε0 — электрическая постоянная, равная 8,854·10−12 Ф/м, εr — относительная диэлектрическая проницаемость.

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектрикомили вакуумом, — к конденсатору. В этом случае ёмкость (взаимная ёмкость) этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:где S — площадь одной обкладки (подразумевается, что обкладки одинаковы), d — расстояние между обкладками, εr — относительная диэлектрическая проницаемость среды между обкладками.

35 Энергия электрического поля

Опыт показ, что заряж конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую (рис. 1.7.1). При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов  при переносе каждой порции Δq внешние силы должны совершить работу  Энергия Wе конденсатора емкости C, заряженного зарядом Q, может быть найдена путем интегрирования этого выражения в пределах от 0 до Q:  Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением Q = CU. 

Электрическую энергию Wе следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе. Формулы для Wе аналогичны формулам для потенциальной энергии Eр деформированной пружины. где k – жесткость пружины, x – деформация, F = kx – внешняя сила.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]