Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции МБПС новые.doc
Скачиваний:
216
Добавлен:
11.04.2015
Размер:
1.68 Mб
Скачать

Переход от дифференциального уравнения высокой степени к системе дифференциальных уравнений первой степени. Модель колебаний сердечной мышцы.

В случаях, когда модель изучаемого процесса описывается ДУ степенью большей 1, удобно трансформировать его в систему ДУ первой степени. Именно такой стандартизованной формы требуют, например, многие математические пакеты для проведения операции численного решения ДУ (см. далее).

Напомним, что системой ДУ первой степени называется система вида:

К ней легко приводится ДУ степени n:

Приведение осуществляется путем замены переменных:

,

которая дает каноническую систему ДУ первой степени:

Рассмотрим пример. Модель колебаний сердечной мышцы (изменение ее длины y в продольном направлении) можно упрощенно описать ДУ следующего вида:

,

где p, q – постоянные коэффициенты, определяющие параметры периодического изменения возмущающего воздействия (мышечного напряжения), - угловая собственная (резонансная) частота колебаний сердечной мышцы.

Произведем замену переменных: . Получим:

Общее аналитическое решение данной системы в графическом виде будет иметь вид (подробно ход получения решения не приводится):

,

где A и B – постоянные коэффициенты.

График решения системы при начальных условияхимеет вид:

Аналитическое и численное решения дифференциальных уравнений

Аналитическим решением ДУ называется нахождение зависимостей его переменных от времени в виде явно заданной математической формулы.

Например, для модели Мальтуса таким аналитическим решением является формула, для модели Ферхюльстааналитическим решением является формула, а вот ДУ модели Вольтера-Лотка:

не имеют общего аналитического решения. То есть, иными словами, интегралы, возникающие в правой части выражений для иневозможно «взять», используя стандартные приемы аналитического интегрирования (см. курс высшей математики). Откуда же взялись приведенные в описании этой модели графики зависимостей переменных от времени и фазовые траектории? Они были получены путемчисленного решения приведенной системы ДУ.

В общем случае численное решение ДУ сводится к замене дифференциалов, входящих в его состав, малыми приращениями соответствующих переменных и нахождение решений получившегося алгебраического уравнения на интервале времени от 0 до любого заранее заданного . Рассмотрим применение простейшего метода численного решения – метода Эйлера для решения ДУ первого порядка.

Представим исходное ДУ в виде:

,

где - дискретность по времени, произвольно выбранная малая величина;;i – шаг алгоритма.

Шаг 0. Задаем начальное условие и определяем.

Шаг 1. Вычисляем первые значения x и t по формулам:

;

.

Шаги 2 - n. Продолжаем вычисление x и t по формулам:

;

.

до тех пор пока

Аналогичным образом можно решать и системы ДУ первого порядка, к которым, как мы теперь знаем, можно свести ДУ любого порядка.

Точность численного решения при прочих равных условиях определяется выбранной величиной дискретности по времени . Чем меньше дискретность, тем точнее решение, но и тем больше шагов должен включать алгоритм. Именно по причине того, что алгоритмы численного решения ДУ требуют огромного количества элементарных вычислений (число шагов может составлять сотни и тысячи), для их практической реализации используют компьютеры. Широко используемые программы математического моделирования, как правило, имеют в своем составе стандартные функции численного решения ДУ, поэтому их пользователю нет нужды детально разбираться в тонкостях используемых алгоритмов – достаточно задать свои ДУ, начальные условия и интервал времени, на котором ищется решения. Все остальное программа сделает самостоятельно.

Простота использования описанных выше функций привела к тому, что создатели математических моделей в настоящее время обычно даже и не пытаются найти аналитическое решение разработанных ими ДУ, предпочитая во всех случаях решать их численно. Справедливости ради следует отметить, что абсолютное большинство ДУ, используемых в современном моделировании, не имеет аналитического решения в принципе.

Сказанное выше не отменяет необходимости при моделировании выполнять качественный анализ ДУ, в первую очередь путем исследования устойчивости стационарных состояний и типов поведения системы вблизи этих состояний.