Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Statistika.doc
Скачиваний:
231
Добавлен:
31.03.2015
Размер:
875.01 Кб
Скачать

7.2. Парная корреляция и парная линейная регрессия

Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы. В основу таблицы положена группировка двух изучаемых во взаимосвязи признаков – X и Y. Частоты fij показывают количество соответствующих сочетаний X и Y. Если fij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания fij допустимо утверждать о связи между X и Y. При этом, если fij концентрируются около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

Уровни признака

X

Уровни признака Y

Y1

Y2

Ym

Итого

X1

f11

f12

f1m

X2

f21

f22

f2m

Xk

fk1

fk2

fkm

Всего

n

Рисунок 7.1. Схема корреляционной таблицы

Наглядным отображением корреляционной таблицы служит корреляционное поле. Оно представляет график, где на оси абсцисс откладываются значения X, по оси ординат – Y, а точками показывается сочетание первичных наблюдений X и Y. По расположению точек, их концентрации в определенном направлении можно судить о наличии и форме связи.

В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по Y. Рассчитаем для каждого Xi среднее значение Y и для Yj среднее значение X.

; i = 1, 2, …, k ; j = 1, 2, …, m.

Последовательность точек на графике иллюстрирует зависимость среднего значения результативного признакаY от факторного X; соединяя точки линиями, получаем эмпирическую линию регрессии, наглядно показывающую, как изменяется Y по мере изменения X. Аналогичным образом, последовательность точек на графике иллюстрирует зависимость среднего значения факторного признакаX от результативного Y; соединяя точки линиями, также получаем эмпирическую линию регрессии, наглядно показывающую, как изменяется X по мере изменения Y. Таким образом, на одном графическом поле можно расположить две линии регрессии

13.​ Понятие о множественной регрессии и корреляции. Меры тесноты связей в многофакторной системе.

Множественная корреляция

Если имеется система статистических показателей: Y, X1, X2, …, Xm, то представляет интерес оценка корреляции между всеми парами показателей этой системы. Все парные коэффициенты корреляции могут быть представлены в одной квадратной матрице R размерностью (m+1)×(m+1), которая называется матрицей парных линейных коэффициентов корреляции. На основе матрицей R, можно определить так называемые коэффициенты множественной линейной корреляции признаков и коэффициенты парной линейной частной корреляции.

Коэффициент множественной линейной корреляции оценивает степень линейной связи одного из признаков системы с совокупностью прочих признаков этой же системы. В общем случае для измерения множественной линейной корреляции определяются параметры множественного уравнения регрессии и теоретические уровни признака-результата (например,Y). На основе фактических и рассчитанных по уравнению (теоретических) значений признака Y вычисляется коэффициент множественной корреляции Ry:

где 2 – общая (фактическая) дисперсия уровней результативного признака (дисперсия Y); σ2факт. – факторная дисперсия или дисперсия теоретических значений признака результата относительно среднего уровня; σ2ост.– остаточная дисперсия, характеризующая вариацию Y за счет факторов, не учтенных уравнением регрессии. Известно, что общая дисперсия признака результата Y складывается из факторной и остаточной составляющих.

Коэффициент множественной корреляции изменяется от 0 до 1. Чем ближе RY к 1, тем более сильная связь между Y и множеством X. Если коэффициент RY незначителен по величине (как правило, RY0,3), то можно утверждать, что или не все важнейшие факторы взаимосвязи учтены, или выбрана неподходящая форма уравнения. В последнем случае пересматривается список переменных модели и возможно, её вид.

Для нелинейной множественной связи рассчитывают индекс корреляции. Методика его вычисления аналогична, но взаимодействие факторов и функция регрессии рассматриваются как нелинейные. Индекс корреляции изменяется в пределах от 0 до 1. Квадрат R равен так называемому коэффициенту детерминации (D или R2). Он показывает, какая часть вариации зависимого признака объясняется включенными в модель факторов.

Показатели множественной корреляции рассчитываются по приведенной выше схеме не часто. Если признак-результат Y включен в общую систему признаков, то на основе общей матрицы парных линейных коэффициентов R можно получить всю совокупность коэффициентов множественной корреляции, так как любой из признаков этой системы может, в принципе, претендовать на роль признака-результата. Коэффициент множественной корреляции, оценивающий степень линейной зависимости любого признака j от всех прочих в этой системе, определяется по формуле

где (m+1) – число всех признаков в системе; |R| –определитель матрицы R парных линейных коэффициентов корреляции; Rii – алгебраическое дополнение элемента (jj) для этой же матрицы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]