Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 1 каз.doc
Скачиваний:
203
Добавлен:
24.03.2015
Размер:
190.98 Кб
Скачать

Диэлектриктердік жылулық қасиеттері

Диэлектриктердің жылулық қасиеттерін сипаттау үшін келесі шамалар пайдаланылады.

Қызуға төзімділігі – электризоляциялық материалдар мен бұымдардың ешбір зиянсыз температураның жедел ауысуы мен жоғары температура әсеріне төтеп беру қабілеттілігі. Электрлік және механикалық қасиеттер неғұрлым өзгеріске ұшырауымен анықталады, мысалға, органикалық диэлектриктерде жүктеудің нәтижесінде созылу немесе бүгілу деформациясының пайда болуы.

Жылуөткізгіштігі – материалда жылу беру процессі.Тәжірибелік түрде анықаталатын λт. λт  коэффициентпен сипатталады, яғни, 1 секунд ішінде 1 м қалыңдықтағы және 1 м2  беттік қабат ауданда 1 °К температуралық өзгерісі кезіндегі жылу мөлшері. Диэлектриктердің жылуөткізгіштік коэффициенті кең аумақта ауысады. Газдар, кеуекті диэлектриктер және сұйықтар үшін λт ең төменгі мәнге ие (ауа үшін λт= 0,025 Вт/(м·К), су үшін λт = 0,58 Вт/(м·К)), ал кристаллық диэлектриктер жылуөткізгіштік коэффициенті ең жоғарғы мәнге ие. (кристаллдық кварц үшін λт = 12,5 Вт/(м·К))Диэлектриктердің жылуөткізгіштік коэффициенті олардың құрылымына (балқытылған кварц үшін λт = 1,25 Вт/(м·К)) және температураға тәуелді.

Диэлектриктердің жылулық кеңейуі температуралық коэффициенттің сызықтық ұлғаюымен бағаланады:

Жылулық ұлғаюы төмен мәнге ие материалдардың жылуға төзімділігі жоғарырақ болады, және керісінше жылулық ұлғаюы жоғары материалдардың жылуға төзімділігі төменірек болады. Органикалық диэлектриктердің жылулық ұлғаюы бейорганикалық диэлектриктерден жоғары (он және жүз есе) болып келеді. Сондықтан бейорганикалық диэлектрлік бұйымдардың өлшемінің тұрақтылығы температуралық тербеліс кезінде органикалыққа қарағанда алдеқайда жоғары болып табылады.

Диэлектриктердің радиациялық шыдамдылығы

Заманауи техника материалдардың химиялық және физикалық қасиеттерін өзгертетін жоғарғы энергиялы корпускулалық және толқындық сәулеленуге ұшырайды. Сәулелендіру кезіндегі материалдардың физико-химиялық қасиеттерінің тұрақтылығы, электрлік, механикалық және т.б. басқа қасиеттерін сақтап қалу дәрежесі радиациялық шыдамдылық деп аталады.

Сәулеленудің затпен әрекеттесу нәтижесі заттың және сәулеленудің табиғатына байланысты. Сәулелену энергиясының шашырауы иондалу нәтижесінде (ішкі фотоэффект), атомдардың қозуынан, комптон шашырауынан, өте жоғары энергия кезінде ядролық түрлену нәтижесінде пайда болады. Энергияның біраз бөлігі түйінаралық атомдарды жұлуға жұмсалады, яғни, материалдың беттік қабатында құрылымдық дефектілерді, вакансия және түйінаралық атомдарды туындату үшін. Бірақ бөлшектердің орын алмасуының ұзындығы үлкен сәулелену, мысалға нейтрондар болса онда мұндай сәулелену материалдың барлық көлемі бойынша құрылымның өзгеруіне әкеледі.

Сәулелену әсерінен химиялық өзгерулер болуы мүмкін, химиялық байланыстар бұзылуы немесе алмасады, бос радикалдар пайда болады. Осылайша органикалық полимерлерде газ бөліну, екі реттік байланыстың түзілуі және жойылуы, полимеризация, көлденең байланыстардың пайда болуы, вулканизация құбылыстары болады. Химиялық өзгерулер материалдардың физикалық қасиеттерінің өзгеруіне әкеледі.

Сәлеленуге төзімді материалдар келесі касиетке ие болуы кажет:

  1.  Энергияны өлшеусіз ионизациясыз жұту қасиетіне;

  2.  Байланыстарды үзбей көбінесе екілік байланыстарды түзе алатын касиетке.

Сәулеленуге ең шыдамды бейорганикалық диэлектриктерге: кварц, слюда, глинозем, цирконий оксиді,бериллий оксидіжәнеәйнектәріздес байланысқа ие слюдалық материалдар жатады. Сәулелену әсерінен салыстырмалы кедергісі мен электрлік беріктілігі кемиді. Сәулеленген бейорганикалық диэлектриктерді жоғарғы температурада күйдірсе олардың алғашқы касиеттерін қайта қалпына келтіру мүмкіншілігі бар.

Полиэтилен, полистирол, синтетикалық және табиғи каучуктергежәне т.б.органикалық поримерлерге радиоактивтілік сәулеленудің әсерін зерттеп келгенде ароматикалық байланыстардың[5]алифатикалық байланыстарға[6] қарағанда радиацияға төзімділігі жоғары болып табылады. Бензолдық сақиналар[7] ешбір деструкциясыз радиоактивті сәулені жұтады деп саналады. Соның нәтижесінде бензолдық сақиналы байланыстардың (полистирол) радиациялық төзімділігі алифатикалық бензолдық сақинасыз полимерлерге (полиэтилен, фторопласт) қарағанда жоғары болады. Радиацияға ең төзімсізі полидиметилсилоксандар[8] болып табылады. Фенилдық топтар[9] полимерлерде радиацияға төзімділікті арттырады. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]