Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Фармакология / Фармакология_флавоноидов_Зверев_Я_Ф_,_Рыкунова_А_Я.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
2.53 Mб
Скачать

сигнализирования. Не исключено, что в основе антитромбоцитарного действия лежит прямое модифицирующее влияние на состояние цитоскелетных протеинов, включая тубулин и актин [5,168-170]. Так, с помощью масс-спектрометрического анализа белковых фракций после флуоресцентной эмиссии выяснилось, что таргетным белком для кверцетина является актин [169]. В другом исследовании натуральный проантоцианидин циннамтанин B-1 в тромбоцитах наряду с антиоксидантной и антитирозинкиназной активностью вызывал снижение реорганизации тубулина, вызываемой тромбином [171]. Вероятно, в этом случае флавоноид предотвращал микротубулярное ремоделирование, индуцируемое тромбином и ведущее к агрегации тромбоцитов, восстанавливая баланс между полимеризацией и деполимеризацией микротрубочек [172]. Возможно, в основе этого лежит предупреждение химической модификации цистеиновых остатков тубулина, ведущее к ингибированию сборки микротрубочек, что предположительно и обусловливает действие кверцетина [168].

Подводя итоги раздела, следует подчеркнуть, что здесь в основном рассмотрены сведения относительно антитромбоцитарной активности флавоноидов, хотя по каждому из обсуждаемых фактов и механизмов существуют и иные данные, зачастую противоречащие приведенным. Это во многом объясняется тем, что подавляющее число сведений получено в экспериментальных условиях in vitro, и не может быть прямо перенесено в условия цельного организма. Недостаточность наших знаний указывает на насущную необходимость углубленного изучения действия флавоноидов на организм человека. И все же, имеющиеся в нашем распоряжении данные в своем большинстве говорят о способности флавоноидов корректировать тромбоцитарные нарушения путем воздействия на различные рецепторы, механизмы внутриклеточной мобилизации Ca2+, многообразные пути внутритромбоцитарного сигнализирования. Это позволяет с оптимизмом смотреть на будущее этих растительных полифенолов как на основу потенциальных антитромбоцитарных средств достаточно эффективных и безопасных, способных внести существенный вклад в лечение и предупреждение целого ряда сердечно-сосудистых заболеваний.

ЛИТЕРАТУРА

1.Воробьева Е.Н., Фомичева М.Л., Воробьев Р.И. и др. Алиментарные факторы риска сердечно-сосудистых заболеваний и их коррекция. Атеросклероз. 2015; 11(1): 68-73.

2.Gross M. Flavonoids and cardiovascular disease. Pharm. Biol. 2004; 42: 22-35.

3.Jackman K.A., Weodman O.L., Sobey C.G. Isoflavones, equol and cardiovascular disease: pharmacological and therapeutic insights. Current Med. Chem. 2007; 14(26): 2824-2830. doi: 10.2174/092986707782360178.

88

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

4. Mladĕnka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoidsare not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010; 49(6): 963-975. doi: 10.1016/j.freeradbiomed.2010.06.010.

5.Wright B., Spencer J.P.E., Lovegrove J.A., Gibbins J.M. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc. Res. 2013; 97(1): 13-22. doi: 10.1093/cvr/cvs304.

6.Rangel-Huerta O.D., Pastor-Villaescusa B., Aguilera C.M., Gil A. A systematic review of the efficacy of bioactive

compounds

in

cardiovascul disease: henolicp

compounds. Nutrients. 2015;

7(7):

51775216- .

doi:

10.3390/nu7075177.

 

 

 

 

 

7.World Health Organization. Cardiovascular Diseases (CVDs). Fact Sheet № 317. Available online: http://www.who.int/mediacentre/factsheets/fs 317/en/(accessed on 15 November, 2015).

8.El Haouari M., Rosado J.A. Medicinal plants with antiplatelet activityPhytother. . Res. 2016; 30(7): 1059-1071. doi: 10.1002/ptr.5619.

9.Vaiyapuri S., Roweth H., Ali M.S. et al. Pharmacological actions of nobiletin in the modulation of platelet function. Br. J. Pharmacol. 2015; 172(16): 4133-4145. doi: 10.1111/bph.13191.

10.Jiang N., Doseff A.I., Grotewold E. Flavones: From biosynthesis to health benefitsPlants. (Basel). 2016; 5(2): 27. doi: 10.3390/plants5020027.

11.Wallace T.C., Slavin M., Frankenfeld C.L. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients. 2016; 8(1): E32. doi: 10.3390/nu8010032.

12.Vilahur G., Badimon L. Antiplatelet properties of naturalroductsp . Vascul. Pharmacol. 2013; 59(3-4): 67-75. doi: 10.1016/j.vph.2013.08.002.

13.Hertog M.G., Feskens E.J., Hollman P.C. et al. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993; 342(8878): 1007-1011. doi: 10.1016/0140-6736(93)92876-u.

14.Keli S.O., Hertog M.G., Feskens E.J., Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch. Intern. Med. 1996; 156: 637-642.

15.Knekt P., Jarvinen R., Reunanen A., MaatelaJ. Flavonoid intake and coronary mortality in Finland: A control study. BMJ. 1996; 312(7029): 478-481 doi: 10.1136/bmj.312.7029.478.

16. de Kleijn M.J., van der Schouw Y.T., Wilson P.W. etDietaryal. intake of phytoestrogens in associated with a favorable metabolic cardiovascular risk profile in postmenopausal US women: the Framingham study.J. Nutr. 2002; 132(2): 276-282. doi: 10.1093/jn/132.2.276.

17.Sagara M., Kanda T.N., Jelekera M. et al.Effects of dietary intake of soy protein and isoflavones on cardiovascular disease risk factors in high risk, middle-ag d men in ScotlandJ.. Am. Coll. Nutr. 2004; 23(1): 8591- . doi: 10.1080/07315724.2004.10719347.

18.Mursu J., Voutilainen S., Nurmi T. et al.Flavonoid intake and risk of ischaemic stroke and CVD mortality in middle aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008; 100(4): 890-895. doi: 10.1017/S0007114508945694

19.McCullough M.L., Peterson J.J., Patel R. et al. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012; 95(2): 454-464. doi: 10.3945/ajcn.111.016634.

20.Romano B., Pagano E., Montanaro V. et al. Novel insights into the pharmacology of flavonoids. Phytother. Res. 2013; 27(11): 1588-1596. doi: 10.1002/ptr.5023.

21.Алиев О.И., Плотников М.Б., Сидехменова А.В. и др. Гемореологические и антигипертензивные эффекты дигидрокверцетина при артериальной гипертензии у крыс. Тромбоз, гемостаз и реология. 2016; 67(S3): 42-43.

22.Mennen L.I., Sapinho D., de Bree A. et Consumptional. of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J. Nutr. 2004; 134(4): 923-926. doi: 10.1093/jn/134.4.923.

23. Lagiou P., Samoli E., Lagiou A. et alFlavonoid. classes and risk of peripheral terialar occlusive disease: acasecontrol study in Greece. Eur. J. Clin. Nutr. 2006; 60(2): 214-219. doi: 10.1038/sj.ejcn.1602291.

24.Desch S., Kobler D., Schmidt J. et al.Low vs. higher-dose dark chocolate and blood pressure in cardiovascular highrisk patients. Am. J. Hypertens. 2010; 23(6); 694-700. doi: 10.1038/ajh.2010.29.

25.Dohadwala M.M., Holbrook M., Hamburg N.M. et al. Effects of cranberry juice consumption on vascular function in

patients with coronary artery disease. Am. J. Clin. Nutr. 2011; 93(5): 934-940. doi: 10.3945/ajcn.110.004242.

26.Errichi B.M., Belcaro G., Hosoi M. et alPrevention. of post thrombotic syndrome with Pycnogenol® in a twelve months study. Panminerva Med. 2011; 53(3 Suppl. 1): 21-27.

27.Weseler A.R., Ruijters E.J., Drittij-Reijnders M.J. et al. Pleiotropic benefit of monomeric and oligomeric flavonols on vascular health – a randomized controlled clinical pilot studyPLoS. One. 2011; 6(12): e28460. doi: 10.1371/journal.pone.0028460.

28.Chiva-Blanch G., Urpi-Sarda M., Lorach R. et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: arandomized clinical trial. Am. J. Clin. Nutr. 2012; 95(2): 326-334. doi: 10.3945/ajcn.111.022889.

29.Curtis P.J., Potter J., Kroon P.A. et al. Vascular function and atherosclerosis progression after 1 y of flavonoid intake

in statin-treated postmenopausal women with type 2 diabetes: A double-blind randomized controlled trial.Am. J. Clin. Nutr. 2013; 97(5): 936-942. doi: 10.3945/ajcn.112.043745.

30.Tangney C., Rasmussen H.E. Polyphenols, inflammation, and cardiovascular diseaseCurr. . Atheroscler. Rep. 2013; 15(5): 324. doi: 10.1007/s11883-013-0324-x.

89

31.Kozlowska A., Szostak-Wegierek D. Flavonoids – food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014; 65(2): 79–85.

32.Karlíčkova J., Říha M., Filipský T. et al. Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med. 2016; 82(1-2): 76-83. doi: 10.1055/s-0035-1557902.

33.Landete J.M. Updated knowledge about polyphenols: Functions, bioavailability, metabolism, and healthCrit. . Rev. Food Sci. Nutr. 2012; 52(10): 936-948. doi: 10.1080/10408398.2010.513779.

34.Ostertag L.M., Kroon P.A., Wood S. et alFlavan.-3-ol-enriched dark chocolate and white chocolate improve acute measures of platelet function in a gender-specific way – a randomized-controlled human intervention trial. Mol. Nutr. Food Res. 2013; 57(2): 191-202. doi: 10.1002/mnfr.201200283.

35.Faggio C., Sureda A., Morabido S. et al. Flavonoids and platelet aggregation: a brief review. Eur. J. Pharmacol. 2017;

807:91-101. doi: 10.1016/j.ejphar.2017.04.009.

36.Ottaviani J.I., Balz M., Kimball J. et al.Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trial. Am. J. Clin. Nutr. 2015; 102(6): 1425-1435. doi: 10.3945/acjn.115.116178.

37.Steptoe A., Gibson E.L., Vuononirta R. et al. The effects of chronic tea intake on platelet activation and inflammation:

A

dou-blelind

placebo

trolledcon

trial. Atherosclerosis.

2007;

193(2): -282. 277doi:

10.1016/j.atherosclerosis.2006.08.054.

 

 

 

 

38.Jagroop I.A. Plant extracts inhibit ADP-induced platelet activation in humans: Their potential therapeutic role as ADP antagonists. Purinerg. Signal. 2014; 10(2): 233-239. doi: 10.1007/s11302-013-9393-0.

39.Arts I.C., Jacobs D.R. Jr., Harnack L.J. et al. Dietary catechins in relation to coronary heart disease death among postmenopausal women. Epidemiology. 2001; 12(6): 668-675. doi: 10.1097/00001648-200111000-00015.

40.Duffy S.J., Vita J.A., Holbrook M. et al. Effect of acute and chronic tea consumption on platelet aggregation in patients with coronary artery diseaseArtherioscler. . Thromb. Vasc. Biol. 2001; 21(6): 1084-1089. doi: 10.1161/01.atv.21.6.1084.

41.Peters U., Poole C., Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am. J. Epidemiol. 2001; 154(6):

495-503. doi: 10.1093/aje/154.6.495.

42. Umar A., Depont F., Jacquet A. et al.Effects of armagnac or vodka on platelet aggregation in healthy volunteers. A randomized controlled clinical trial. Thromb. Res. 2005; 115(1-2): 31-37. doi: 10.1016/j.thromres.2004.07.006.

43. Nardini M., Natella F., Scaccini C. Role of dietary polyphenols in platelet aggregationreview. ofA the supplementation studies. Platelets. 2007; 18(3): 224-243. doi: 10.1080/09537100601078083.

44.Lavy A., Fuhrman B., Markel A. et al. Effect of dietary supplementation of red or white wine on human blood chemistry, hematology and coagulation: favorable effect of red wine on plasma high-density lipoprotein. Ann. Nutr.

Metab. 1994; 38(5): 287-294. doi: 10.1159/000177823.

45.Giovannelli L., Pitozzi V., Luceri C. et al.Effects of de-alcoholised wines with different polyphenol content on DNA oxidative damage, gene expression of peripheral lymphocytes,nda haemorheology: an intervention study in postmenopausal women. Eur. J. Nutr. 2011; 50(1): 19-29. doi: 10.1007/s00394-010-0111-1.

46.Rein D., Paglieroni T.G., Pearson D.A. et al.Cocoa and wine polyphenols modulate platelet activation and function. J. Nutr. 2000; 130(8S Suppl): 2120S-2126S. doi: 10.1093/jn/130.8.2120S.

47.Folts J.D. Potential health benefits from the flavonoids in grape products on vascular diseaseAdv. . Exp. Med. Biol.

2002; 505: 95-111. doi: 10.1007/978-1-4757-5235-9_9.

48.Zern T.L., Wood R.J.,Green C. et al.Grape polyphenols exert a cardioprotective effect in preand postmenopausal women by lowering plasma lipids and reducing oxidative Jstress. Nutr. . 2005; 135(8): 19-1917. doi: 10.1093/jn/135.8.1911.

49.Yubero N., Sanz-Buenhombre M., Guadarrama A. et al. LDL cholesterol-lowering effects of grape extract used as a

dietary

supplement

on

healthy

volunteers. Int. J. Food Sci. Nutr.

2013;

64(4): -406400. doi:

10.3109/09637486.2012.753040.

 

 

 

 

50.Keevil J.G., Osman H.E., Reed J.D., Folts J.D. Grape juicebut not orange or grapefruit juice inhibits human platelet aggregation. J. Nutr. 2000; 130(1): 53-56. doi: 10.1093/jn/130.1.53.

51.Freedman J.E., Parker 3rd C., Li L. et al. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001; 103(23): 2792-2798. doi: 10.1161/01.cir.103.23.2792.

52. Albers A.R., Varghese S., Vitseva O.

et al. The antiinflammatory effects of purple grape juice consumption in

subjects with stable coronary artery

diseaseArtherioscler.

. Thromb. Vasc. Biol. 2004; 24(11):e179-e180. doi:

10.1161/01.ATV.0000143497.97844.af.

 

 

53.Atsushi O. Anti-platelets effects of genistein, an isoflavonoid from soybean. Soy Protein Res. 2004; 7: 145-148.

54.Okamoto K., Horisawa R. Soy products and risk of an aneurysmal rupture subarachnoid hemorrhage in Japan.Eur. J. Cardiovasc. Prevent. Rehabilit. 2006; 13(2): 284-287. doi: 10.1097/01.hjr.0000194419.24261.5c.

55.Kondo K., Suzuki Y., Ikeda Y., Umemura K. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur. J. Pharmacol. 2002; 455(1): 53-57. doi:

10.1016/s0014-2999(02)02449-4.

56. Fuentes E., Palomo I. Antiplatelet effects of natural bioactive compounds by multipletargets: food and drug interactions. J. Functional Foods. 2014; 6: 73-81.

57.Cassidy A., O'Reilly E.J., Kay C. et al.Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011; 93(2): 338-347. doi: 10.3945/ajcn.110.006783.

90

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

58.Bijak M., Saluk J., Ponczek M.B., Nowak P. Antithrombin effect of polyphenol-rich extracts from black chokeberry and grape seeds. Phytother. Res. 2013; 27(1): 71-76. doi: 10.1002/ptr.4682.

59.Воронина Е.Н., Филипенко М.Л., Сергеевичев Д.С., Пикалов И.В. Мембранные рецепторы тромбоцитов:

функции и полиморфизм. Вестник ВОГиС. 2006; 10(3): 553-564.

60.Баринов Э.Ф., Сулаева О.Н. Молекулярные механизмы тромбогенеза. Кардиология. 2012; 52(12): 45-56.

61.Спасов А.А., Яковлев Д.С., Букатина Т.М. P2y1-рецепторы и их влияние на процессы агрегации тромбоцитов.

Региональное кровообращение и микроциркуляция. 2012; 11(3): 4-11.

62.Баринов Э.Ф., Сулаева О.Н., Канана Н.Н., Твердохлеб Т.А. Пуриновые рецепторы и сопряженные внутриклеточные сигнальные системы в регуляции функции тромбоцитов. Кардиология. 2014; 54(2): 56-62.

doi: 10.18565/cardio.2014.2.56-62.

63. Шатурный В.И., Шахиджанов С.С., Свешникова А.Н., Пантелеев М.А. Активаторы и пути внутриклеточной сигнализации в тромбоцитах крови. Биомедицинская химия. 2014; 60(2): 182-200.

64. Баринов Э.Ф. Тромбоксан А2: механизмы и внутриклеточные сигнальные системы реализации. Кардиология.

2016; 56(4): 83-90. doi: 10.18565/cardio.2016.4.83-90.

65.Gibbins J.M. Platelet adhesion signallingand the regulation of thrombus formation.J. Cell. Sci. 2004; 117( Pt. 16): 3415-3425. doi: 10.1242/jcs.01325.

66.Guerrero J.A., Lozano M.L., Castillo J. et al.Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J. Thromb. Haemost. 2005; 3(2): 369-376. doi: 10.1111/j.1538-7836.2004.01099.x.

67.Natella F., Nardini M., Virgili F., Scaccini C. Role of dietary polyphenols in the platelet aggregation network–a review of the in vitro studies. Curr. Top. Nutr. Res. 2006; 4(1): 1-21.

68.Bojić M., Debeljak Ž., Medić-Sarić M., Tomičić M. Evaluation of antiaggregatory activity of flavonoid aglycone series. Nutr. J. 2011; 10: 73. doi: 10.1515/cclm-2011-0960.

69.Bojić M., Maleš Ž, Antolić A. et al. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta pharmaceutica. 2019; 69(4): 483-495. doi: 10.2478/acph-2019-0050.

70.Liang M.L., Da X.W., He A.D. et al. Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci Rep. 2015; 5: 11142. doi: 10.1038/srep11142.

71.Kelly C., Hunter K., Crosbie L. et al. Modulation of human platelet function by food flavonoids. Biochem. Soc. Trans. 1996; 24(2): 197S. doi: 10.1042/bst024197s.

72.Fawzy A.A., Vishwanath B.S., Franson R.C. Inhibition of human non-pancreatic phospholipases A2 by retinoids and flavonoids. Mechanism of action. Agents Act. 1988; 25(3-4): 394-400. doi: 10.1007/BF01965048.

73.Chang H.W., Baek S.H., Chung K.W. et al. Inactivation of phospholipase2 byA naturally occuring biflavonoid, ochnaflavone. Biochem. Biophys. Res. Commun. 1994; 205(1): 843-849. doi: 10.1006/bbrc.1994.2741.

74.Lindahl M., Tagesson C. Flavonoids as phospholipase2 inhibitors:A importance of their structure for selective inhibition of group II phospholipase A2. .Inflammation. 1997; 21(3): 347-356. doi: 10.1023/a:1027306118026.

75.Lindahl M., Tagesson C. Selective inhibition of group II phospholipase A2 by quercetin. Inflammation. 1993; 17(5): 573-582. doi: 10.1007/BF00914195.

76.Ryu R., Jung U.J., Kim H. et al. Anticoagulant and antiplatelet activities Artemisiaof princeps Pampanini and its bioactive compounds. Prev. Nutr. Food Sci. 2013; 18(3): 181-187. doi: 10.3746/pnf.2013.18.3.181.

77. Moon C.H.,

Jung

Y.S., Kim M.H. et al. Mechanism for antiplatelet effect of onion: AA

release inhibition,

thromboxane A(2)

synthase inhibition and TXA(2)/PGH(2) receptor blockadeProstagland.

. Leukot. Essent. Fatty

Acids. 2000; 62(5):

277-283. doi: 10.1054/plef.2000.0155.

 

 

 

 

78. Son D-J., Cho MR- .,

Jin Y-R. et al. ntiplateletA effect of green tea catechins: possible mechanism

through

arachidonic

acid

pathwayProstagland.

. Leukot. Essent. Fatty Acids.

2004;

71(1):

25-31.

doi:

10.1016/j.plefa.2003.12.004.

79.Кубатиев А.А., Ядигарова З.Т., Рудько И.А. и др. Диквертин — эффективный ингибитор агрегации тромбоцитов флавоноидной природы. Вопросы биологической, медицинской и фармацевтической химии. 1999 ; № 3 : 47-51.

80.Mower R.L., Landolfi R., Steiner M. Inhibitionn vitro of platelet aggregation and arachidonic acid metabolism by flavone. Biochem. Pharmacol. 1984; 33(3): 357-363. doi: 10.1016/0006-2952(84)90226-0.

81.Janssen K., Mensink R.P., Cox F.J.J. et al.Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study.Amer. J. Clin. Nutr. 1998; 67(2): 255-262. doi: 10.1093/ajcn/67.2.255.

82.Guerrero J., Navarro-Nunez L., Lozano M. et alFlavonoids. inhibit the platelet TxA(2) signaling pathway and antagonize TxA(2) receptors (TP) in platelets and smooth muscle cellsBr. . J. Clin. Pharmacol. 2007; 64(2): 133144. doi: 10.1111/j.1365-2125.2007.02881.x.

83.Tzeng S.H., Ko W.C., Ko F.N., Teng C.M. Inhibition of platelet aggregation by some flavonoids. Thromb. Res. 1991; 64(1): 91-100. doi: 10.1016/0049-3848(91)90208-e.

84.Nakashima S., Koike T., Nozawa Y. Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane A2-mediated human platelet responses. Mol. Pharmacol. 1991; 39(4): 475-480.

85.Navarro-Núñez L., Castillo J., Lozano M.L. et al. Thromboxane A2 receptor antagonism by flavonoids:tructures - activity relationships. J. Agric. Food Chem. 2009; 57: 1589-1594.

91

86.Kwon S.U., Lee H.Y., Xin M. et al. Antithrombotic activity of Vitis labrusca extract on rat platelet aggregation. Blood Coagul. Fibrinolysis. 2016 ; 27(2): 141-146. doi : MBC.0000000000000394.

87.Тутельян В.А., Лашнева Н.В. Биологически активные вещества растительного происхождения. Флавонолы и флавоны: распространенность, пищевые источники, потребление. Вопросы питания. 2013; 82(1): 4-22.

88.Анищенко А.М., Плотников М.Б., Алиев О.И. и др. Антитромбогенная и антитромбоцитарная активность комплексного изофлавонового препарата. Бюллетень СО РАМН. 2009; 140(6): 43-46.

89.Плотникова Т.М., Анищенко А.М., Плотников М.Б. Фитоэстрогены: механизмы коррекции сердечно-

сосудистых осложнений климактерического синдрома. Экспериментальная и клиническая фармакология. 2017; 80(1): 39-44. doi. 10.30906/0869-2092-2017-80-1-39-44.

90.Plotnikova A.M., Shulgau Z.T., Plotnikova T.M. et al. Antithrombogenic and antiplatelet activities of extrat from Maackia amurensis wood. Bull. Exper. Biol. Med. 2009; 147(2): 204-207. doi: 10.1007/s10517-009-0475-5.

91.Anischenko A.M. Hemoreological effects of complex isoflavonoid preparation in ovariectomized ratsBull. . Exper. Biol. Med. 2013; 154(6): 755-757. doi: 10.1007/s10517-013-2048-x.

92.Кулеш Н.И., Замятина С.В., Зверев Я.Ф. и др. Средство, обладающее антиагрегантной и антикоагулянтной активностью. Патент РФ, 2016. № 2601407. МПК А61К 36/48; А61Р 7/02.

93.Замятина С.В., Зверев Я.Ф., Момот А.П. и др. Влияние 7-О-гентиобиозида формононетина на показатели тромбоцитарного гемостаза у крыс. Тромбоз, гемостаз и реология. 2016; 66(2): 55–58.

94.Зверев Я.Ф., Кудинов А.В., Момот А.П. и др. Антиагрегантная и антикоагулянтная активность 7-О- гентиобиозида формононетина в условиях in vitro и in vivo. Бюллетень сибирской медицины. 2016; 15(4): 30-

35.doi. 10.20538/1682-0363-2016-4-30-39.

95.Munoz Y., Garrido A., Valladares L. Equol is more active than soy isoflavone itself to compete for binding to

thromboxane

A(2)

receptor

in

human

Thrombplatelets. .

Res.

2009;

123(5):740-744. doi:

10.1016/j.thromres.2008.07.011.

 

 

 

 

 

 

 

96. Jin Y.R., Han

X.H., Zhang Y.H. et al. Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by

inhibition of PLC-gamma2 phosphorilation and cyclooxygenase-1 activity. Atherosclerosis. 2007; 194(1): 144-152.

doi: 10.1016/j.atherosclerosis.2006.10.011.

 

 

 

 

 

 

 

97. Jin Y.R., Im J.H., Park E.S. et alAntiplatelet. activity of epigallocatechin gallate is mediated by the

inhibition of

PLCgamma2

phosphorilation, elevation

of PCD2 production, and

maintaining

ciumcal-ATPase

activity. J.

Cardiovasc. Pharmacol. 2008; 51(1): 45-54. doi: 10.1097/FJC.0b013e31815ab4b6.

98.Bucki R., Pastore J.J., Giraud F. et alFlavonoid. inhibition of platelet procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003; 1(8): 1820-1828. doi: 10.1046/j.1538-7836.2003.00294.x.

99.Beretz A., Stierle A., Anton R., Cazenave J.P. Role of cyclic AMP in the inhibition of human platelet aggregation by quercetin, a flavonoid that potentiates the effect of prostacyclin. Biochem. Pharmacol. 1982; 31(22): 3597-3600. doi: 10.1016/0006-2952(82)90581-0.

100.Hsiao G., Chang C.Y., Shen M.Y. et al. alpha-Naphthoflavone, a potent antiplatelet flavonoid, is mediated through inhibition of phospholipase C activity and stimulation of cyclic GMP formation. J. Agric. Food Chem. 2005; 53(13): 5179-5186. doi: 10.1021/jf0500738.

101.Allison G.L., Lowe G.M., Rahman K. Aged garlic extract inhibits platelet activation by increasing intracellular cAMP and reducing the interaction of GPIIb/IIIa receptor with fibrinogen. Life Sci. 2012; 91(25-26): 1275-1280. doi: 10.1016/j.lfs.2012.09.019.

102.Rahman K., Lowe G.M., Smith A. Aged garlic extract inhibits human platelet aggregation by altering intracellular signaling and platelet shape change. J. Nutr. 2016; 146(2): 410S-415S. doi: 10.3945/jn.114.202408.

103.Oh W.J., Endale M., Park S.C et al.Dual roles of quercetin in platelets: Phosphoinositide-3-kinase and MAP kinase inhibition, and cAMP-dependent vasodilator-stimulated phosphoprotein stimulation.Evid. Based Complement. Alternat. Med. 2012; 2012: 485262. doi: 10.1155/2012/485262.

104.Ok W.J., Cho H.J., Kim H.H. et al. Epigallocatechin-3-gallate has an anti-platelet effect in a cyclic AMP-dependent manner. J. Atheroscler. Thrombosis. 2012; 19(4): 337-348. doi: 10.5551/jat.10363.

105.Ferrell J.E. Jr., Chang Sing P.D., Loew G. et al. Structure/activity studies of flavonoids as inhibitors of cyclic AMP phosphodiesterase and relationship to quantum chemical indices. Mol. Pharmacol. 1979; 16(2): 556-568.

106.Ruckstuhl M., Beretz A., Anton R.Landry, Y. Flavonoids are selective cyclic GMP phosphodiesterase inhibitors. Biochem. Pharmacol. 1979; 28(4): 535-538. doi: 10.1016/0006-2952(79)90249-1.

107.Кубатиев А.А., Ядигарова З.Т., Рудько И.А. и др. Подавление диквертином АДФ- и тромбининдуцированного накопления цитоплазматического кальция в тромбоцитах человека. Химико-

фармацевтический журнал. 1999; 33(12): 3-4.

108.Lu W.J., Lin K.C., Lin C.P. et al. Prevention of rterial thromdosis by nobiletin: in vitro and in vivo studies. J. Nutr. Biochem. 2016; 28: 1-8. doi: 10.1016/j.jnutbio.2015.09.024.

109.Dobrydneva Y., Williams R.L., Morris G.Z., Blackmore P.F. Dietary phytoestrogens and their synthetic structural analogues as calcium channel blockers in human plateletsJ.. Cardiovasc. Pharmacol. 2002; 40(3): 399-410. doi: 10.1097/00005344-200209000-00009.

110.Ganeshpurkar A., Saluja A.K. The pharmacological potential of rutinSaudi. Pharm. J. 2017; 25: 149-164. doi: 10.1016/j.jsps.2016.04.025.

92

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

111.Navarro-Núñez L., Rivera J., Guerrero J.A. et al. Differential effects of quercetin, apigenin and genistein on signalling

pathways of protease-activated receptors PAR1 and PAR4 in platelets. Br. J. Pharmacol. 2009; 158(6): 1548-1556. doi: 10.1111/j.1476-5381.2009.00440.x.

112.Blache D., Durand P., Prost M., Loreau N. (+)-Catechin inhibits platelet hyperactivity induced by an acute iron load in vivo. Free Radic. Biol. Med. 2002; 33(12): 1670-1680. doi: 10.1016/s0891-5849(02)01139-5.

113.Qi R., Liao F., Inoue K. et al.Inhibition by diallyl trisulfide, a garlic component, of intracellular Ca(2+) mobilization without affecting inositol1,4,5- -triphosphate (IP(3)) formation in activated plateletsBiochem. . Pharmacol. 2000; 60(10): 1475-1483. doi: 10.1016/s0006-2952(00)00467-6.

114.Kang W.S., Chung K.H., Chung J.H. et alAntiplatelet. activity of greentea catechins is mediated by inhibition of cytoplasmic calcium increase. J. Cardiovasc. Pharmacol. 2001; 38(6): 875-884. doi: 10.1097/00005344-200112000- 00009.

115.Wright B., Moraes L.A., Kemp C.F. et al. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids.Br. J. Pharmacol. 2010; 159(6): 13121325- . doi: 10.1111/j.14765381.2009.00632.x.

116.Lill G., Voit S., Schror K., Weber A.A. Complex effects of different green tea catechins on humanlateletsp . FEBS Lett. 2003; 546(2-3): 265-270. doi: 10.1016/s0014-5793(03)00599-4.

117.Choi J.H., Park S.E., Kim S. Kaempferol inhibits thrombosis and platelet activationBiochimie. . 2015; 115: 177-186. doi: 10.1016/j.biochi.2015.06.001.

118.Hao H.Z., He A.D., WangD.C. et al. Antiplatelet activity of loureirin A by attenuating Akt phosphorilation:n vitro studies. Eur. J. Pharmacol. 2015; 746: 63-69. doi: 10.1016/j.ejphar.2014.10.059.

119.Mira A., Alkhiary W., Shimizu K. Antiplatelet and anticoagulant activities Angelicaof shikokiana extract and its isolated compounds. Clin. Appl. Thromb. Hemost. 2017; 23(1): 91-99. doi: 10.1177/1076029615595879.

120.Tian X., Chang L., Ma G. et alDelineation. of platelet activation pathway of scutellarein revealed its intracellular target as protein kinase C. Biol. Pharm. Bull. 2015; 39(2): 181-191. doi. 10.1248/bpb.b15-00511.

121.Sheu J.R., Hsiao C., Chou P.H. et al. Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. J. Agric. Food Chem. 2004; 52(14): 4414-4418. doi: 10.1021/jf040059f.

122.Krotz F., Sohn H.Y., Gloe T. et al.NAD(P)H oxidase-dependent platelet superoxide anion release increases platelet recruitment. Blood. 2002; 100(3): 917-924. doi: 10.1182/blood.v100.3.917.

123.Krotz F., Sohn H.Y., Pohl U. Reactive oxygen species: players in the platelet gameAtherosclerosis. Thromb. Vasc.

Biol. 2004; 24(11): 1988-1996. doi: 10.1161/01.ATV.0000145574.90840.7d.

124.Begonia A.J., Gambaryan S., Geiger J. et al. Platelet NAD(P)H oxidasegeneratedROS production regulates {alpha}IIb{beta}3 integrin activation independent of the NO/cGMP pathway.Blood. 2005; 106(8): 2757-2760. doi: 10.1182/blood-2005-03-1047.

125.Pignatelli P., Pulcinelli F.M., Lenti L.et alHydrogen. peroxide is involved in collagen-induced platelet activation. Blood. 1998 ; 91(2) : 484-490.

126.Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. Пущино: Synchrobook, 2013. 310 c.

127.Зверев Я.Ф. Флавоноиды глазами фармаколога. Антиоксидантная и противовоспалительная активность.

Обзоры клинической фармакологии и лекарственной терапии. 2017; 15(4): 5-13. doi: 10.17816/RCF1545-1ю.

128.Pietta P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000; 63(7): 1035-1042. doi: 10.1021/np9904509.

129.Procházková D., Boušová I., Wilhelmová N. Antioxidant and prooxidant properties of flavonoids.Fitoterapia. 2011; 82(4): 513-523. doi: 10.1016/j.fitote.2011.01.018.

130.Bubols G.B., da Rocha V.D., MedinaRemón- A. et al. The antioxidant activity of coumarins and flavonoids. MiniRev. Med. Chem. 2013; 13(3): 318-334. doi: 10.2174/138955713804999775.

131.Rimbach G., Weinberg P.D., de Pascual-Teresa S. et al. Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function. Biochim. Biophys. Acta. 2004; 1670(3): 229-

237.doi: 10.1016/j.bbagen.2003.12.008.

132.Vitseva O., Varghese S., Chakrabarti S. et al. Grape seed and skin extracts inhibit platelet function and release of

reactive

oxygen

intermediatesJ. . Cardiovasc.

Pharmacol.

2005;

46(4): -451. 445doi:

10.1097/01.fjc.0000176727.67066.1c.

 

 

 

133.Pignatelli P., Pulcinelli F.M., Cestini A. et alThe. flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production ofhydrogen peroxide. Amer. J. Clin. Nutr. 2000; 72(5): 11501155. doi: 10.1093/ajcn/72.5.1150.

134.Schoene N.W., Guidry C.A. Dietary soy isoflavones inhibit activation of rat plateletsJ. . Nutr. Biochem. 1999; 10(7): 421-426. doi: 10.1016/s0955-2863(99)00023-6.

135.Kolodziejczyk-czepas J., Olas B., Malinowska J. et al. Extracts from Trifolium pallidum and Trifolium scabrum aerial parts as modulators of blood platelet adhesion and aggregationPlatelets.. 2013; 24(2): 136144-. doi: 10.3109/09537104.2012.676221.

136.Pignatelli P., Di Santo S., Buchetti B. et al.Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C- dependent NADPH oxidase activation: ffect on platelet recruitmentFASEB. J. 2006; 20(8): 10821089- . doi: 10.1096/fj.05-5269com.

93

137.Wang S.B., Jang J.Y., Chae Y.H. et alKaempferol. suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.Free Radic. Biol. Med. 2015; 83: 41-53. doi: 10.1016/j.freeradbiomed.2015.01.018.

138.Mozzicafreddo M., Cuccioloni M., Eleuteri A.M. et al. Flavonoids inhibit the amidolytic activity of human thrombin. Biochimie. 2006; 88(9): 1297-1306. doi: 10.1016/j.biochi.2006.04.007.

139.Bijak M., Ziewiecki R., Sluk J. et al. Thrombin inhibitory activity of some polyphenolic compounds. Med. Chem. Res. 2014; 23(5): 2324-2337. doi: 10.1007/s00044-013-0829-4.

140.Liu L., Ma H., Yang N. et alA. series of natural flavonoids as thrombin inhibitors: tructures-activity relationships. Thromb. Res. 2010; 126(5): e365-e378. doi: 10.1016/j.thromres.2010.08.006.

141.Cuccioloni M., Mozzicafreddo M., Sparapani L. et alPomegranate. fruit components modulate human thrombin. Fitoterapia. 2009; 80(5): 301-305. doi: 10.1016/j.fitote.2009.03.009.

142. Bijak M., Bobrowski M., Borowiecka M. et Anticoagulantal. effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia. 2011; 82(6): 811-817. doi: 10.1016/j.fitote.2011.04.017.

143.Pawlaczyk I., Czerchawski L., Kuliczkowski W. et Anticoagulantal. and anti-platelet activity of polyphenolicpolysaccharide preparation isolated from the medicinal plantErigeron canadensis L. Thromb. Res. 2011; 127(4): 328-340. doi: 10.1016/j.thromres.2010.11.031.

144.Lu J., Song H.P., Li P. et alScreening. of direct thrombin inhibitors fromRadix Salviae Miltiorrhizae by a peak fractionation approach. J. Pharm. Biomed. Anal. 2015; 109: 85-90. doi: 10.1016/j.jpha.2015.02.020.

145.Gottstein N., Ewins B.A., Eccleston C. et al. Effect of genistein and daidzein on platelet aggregation and monocyte and endothelial function. Br. J. Nutr. 2003; 89(5): 607-616. doi: 10.1079/BJN2003820.

146.Ji X.D., Melman N., Jacobson K.A. Interactions of flavonoids and other phytochemicals with adenosine receptorsJ.. Med. Chem. 1996; 39(3): 781-788. doi: 10.1021/jm950661k.

147.Jacobson K.A., Moro S., Manthey J.A. et al. Interactions of flavones and other phytochemicals with adenosine receptors. Adv. Exp. Med. Biol. 2002; 505: 163-171. doi: 10.1007/978-1-4757-5235-9_15.

148.Manaster Y., Shenkman B., Rosenberg N., Savion N. Allicin and disulfiram enhance platelet integrin alphaIIbeta3fibrinogen binding. Thromb. Res. 2009; 124(4): 477-482. doi: 10.1016/j.thromres.2009.06.019.

149. Luzak B., Kassassir H., Rój E. et alXanthohumol. from hop cones Humulus( lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem. 2017; 123(1): 54-60. doi: 10.1080/13813455.2016.1247284.

150.Schramm D.D., Wang J.F., Holt R.R. et al. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells. Am. J. Clin. Nutr. 2001; 73(1): 36-40. doi: 10.1093/ajcn/73.1.36.

151. Polagruto

J.A., Schramm

D.D.,

Wang-Polagruto J.E. et al. Effects of flavonoid-rich beverages on prostacyclin

synthesis

in humans and

human

aortic endothelial cells:association with ex vivo platelet function. J. Med. Food.

2003; 6(4): 301-308. doi: 10.1089/109662003772519840.

152.Андронов Е.В., Киричук В.Ф., Иванов А.Н., Мамонотова Н.В. Роль оксида азота в регуляции микроциркуляторного звена системы гемостаза (Обзор литературы). Саратовский научно-медицинский журнал. 2007; 17(3): 39-44.

153.Mosawy S., Jackson D.E., Woodman O.L., Linden M.D. Treatment with quercetin and 3',4'-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo. J. Thromb. Thrombolysis. 2013; 36(1): 50-57. doi: 10.1007/s11239-012-0827-2.

154.Доркина Е.Г. Гепатопротекторные свойства флавоноидов (фармакодинамика и перспективы клинического изучения): Автореф. дис. - д-ра биол. наук. Волгоград, 2010.

155.Тюренков И.Н., Воронков А.В., Слиецанс А.А., Оганесян Э.Т. Влияние флавоноидов на основные параметры

гемостаза крови и антитромботическую функцию эндотелия при сахарном диабете. Фармация. 2012; № 4: 3436.

156.Zhang Y., Wang X., Wang Y. et alSupplementation. of cyanidin-3-O-ß-glucoside promotes endothelial repair and prevents enhanced atherogenesis in diabetic apolipoprotein T-deficient mice. J. Nutr. 2013; 143(8): 1248-1253. doi: 10.3945/jn.113.177451.

157.Bhardwaj P., Khanna D., Balakumar P. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardiovasc. Toxicol. 2014; 14(1): 41-51. doi: 10.1007/s12012-013-9226-y.

158.Liu Y., Li D., Zhang Y. et al. Anthocyanin increases adiponectin secretion and protects against diabe-relatesd

endothelial

dysfunction. Am. J. Physiol. Endocrinol. Metab.

2014;

306(8): -E988E975.

doi.

10.1152/ajpendo.00699.2013.

 

 

 

159.Плотников М.Б., Алиев О.И., Сидехменова А.В. и др. Механизмы гипотензивного действия дигидрокверцетина при артериальной гипертензии. Бюллетень экспериментальной биологии и медицины. 2016; 162(9): 338-341.

160.Upadhyay S., Dixit M. Role of polyphenols and other phytochemicals on molecular signalingOxid. . Med. Cell. Longev. 2015 ; 2015: 504253. doi: 10.1155/2015/504253.

161.Hendrich A.B. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sinica. 2006; 27(1): 27-40. doi: 10.1111/j.1745-7254.2006.00238.x.

162.Murota K., Shimizu S., Miyamoto S. et al.Unique uptake and transport of isoflavone aglycones by human intestinal caco-2 cells: omparisonc of isoflavonoids and flavonoidsJ. .Nutr. 2002; 132(7): 1956-1961. doi: 10.1093/jn/132.7.1956.

94

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

163.Arora A., Byrem T.M., Nair M.G., Strasburg G.M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 2000; 373(1): 102-109. doi: 10.1006/abbi.1999.1525.

164.Tsuchiya H. Effects of green tea catechins on membrane fluidityPharmacology. . 1999; 59(1): 3444-. doi: 10.1159/000028303.

165.Lenne-Gouverneur A.F., Lobstein A., Haan-Archipoff G. et al.Interactions of the monomeric and dimeric flavones apigenin and amentoflavone with the plasma membrane of L929 cells; a fluorescence study. Mol. Membr. Biol. 1999; 16(2): 157-165. doi: 10.1080/096876899294616.

166.Tsuchiya H., Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated fromSophora exigua. Phytomedicine. 2000; 7(2): 161-165. doi: 10.1016/S0944-7113(00)80089-6.

167.Tsuchiya H., Nagayama M., Tanaka T. et al. Membranerigidifyingeffects of anti-cancer dietary factors. Biofactors. 2003; 16(3-4): 45-56. doi: 10.1002/biof.5520160301.

168.Gupta K., Panda D. Perturbation of microtubule polymerisation by qucetinr through tubulin binding: novela mechanism of its antiproliferative activity. Biochem. 2002; 41(43): 13029-13038. doi: 10.1021/bio25952r.

169.Bőhl M., Czupalla C., Tokalov S.V. et al. Identification of actin as quercetin-binding protein: an approach to identify target molecules for specific ligands. Anal. Biochem. 2005; 346(2): 295-299. doi: 10.1016/j.ab.2005.08.037.

170. Pastore J.J., Funaki M., Janmey P.A., Bucki R. Flavonoid-me iated inhibition of

actin polymerizationin cold-

activated platelets. Platelets. 2005; 16(6): 362-367. doi: 10.1080/09537100500124442.

 

171.Ben Amor N., Bouaziz A., Romera-Castillo C. et al. Characterization of the intracellular mechanisms involved in the antiaggregant properties of cinnamtannin B-1 from bay wood in human platelets. J. Med. Chem. 2007; 50(16): 39373944. doi: 10.1021/jm070508d.

172.Bouaziz A., Amor N.B., Woodard G.E. et al. Tyrosine phosphorylation/dephosphorylation balance is involved in thrombin-evoked microtubular reorganisation in human platelets. Thromb. Haemost. 2007; 98(2): 375-384

95