Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Фармакология / Фармакология_флавоноидов_Зверев_Я_Ф_,_Рыкунова_А_Я.pdf
Скачиваний:
1
Добавлен:
24.03.2024
Размер:
2.53 Mб
Скачать

флавоноиды, при различных сердечно-сосудистых заболеваниях, метаболическом синдроме, сахарном диабете, ожирении, ревматоидном артрите и других. Однако целенаправленно проводимых исследований, касающихся противовоспалительного действия флавоноидов, его механизмов и тактики применения явно недостаточно. По мнению многих исследователей, эта проблема заслуживает самого пристального и глубокого изучения [4,59,140]. Присоединимся к этой точке зрения.

Завершая обсуждение проблемы, отметим, что при анализе имеющейся литературы становится очевидным, что подавляющему большинству флавоноидов присуще мощное противовоспалительное действие, доказанное на различных клеточных культурах и доклинических экспериментальных моделях. Это действие носит многофакторный характер, связано с антиоксидантным эффектом флавоноидов, угнетением сигнальных путей развития воспалительной реакции, выработки провоспалительных факторов, ингибированием рекрутирования иммунных клеток, активацией эндогенных противовоспалительных механизмов. Основная задача, стоящая сегодня перед исследователями, подтвердить экспериментальные данные в клинических наблюдениях и обеспечить эффективность противовоспалительного действия флавоноидов путем решения проблемы повышения их биодоступности. Как бы там ни было, нам близок оптимистический взгляд на перспективу клинического применения флавоноидов. Кроме выявленного многообразия биологической активности, это обусловлено относительной дешевизной получения лекарственных препаратов и большой распространенностью этих пищевых полифенолов в окружающей нас, то есть близкой нам природе.

ЛИТЕРАТУРА

1.Тутельян В.А., Лашнева Н.В. Биологически активные вещества растительного происхождения. Флавонолы и флавоны: распространенность, пищевые источники, потребление. Вопросы питания. 2013; 82, (4): 4-22.

2.Тараховский Ю.С., Ким Ю.А., Абдрасилов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика,

медицина. Пущино: Synchrobook, 2013. 310 с.

3.Азарова О.В., Галактионова Л.П. Флавоноиды: механизм противовоспалительного действия . Химия растительного сырья. 2012; № 4: 61-78.

4.Ferraz C.R., Carvalho T.T,. Manchope M.F.et al. Therapeutic potential of flavonoids in pain and inflammation:

mechanisms of action, pre-clinical and clinical data,and pharmaceutical development.Molecules. 2020; 25(3):

762. doi: 10.3390/molecules25030762.

5.Зверев Я.Ф. Флавоноиды глазами фармаколога. Антиоксидантная и противовоспалительная активность.

Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15(4): 5-13. doi: 10.17816/RCF1545-13.

6.Maleki S.J., Crespo J.F., Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019; 299: 125124. doi: 10.1016/j.foodchem.2019.125124.

66

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

7.Garcia-Barrado M.J., Iglesias-Osma M.C., Pérez-Garcia E. et al. Role of flavonoids in the interactions among obesity, inflammation, and autophagy. Pharmaceuticals (Basel). 2020; 13(11): 342. doi: 10.3390/phl3110342.

8.Jubaidi F.F., Zainalabidin S., Taib I.S. et al.The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis.Int. J. Mol. Sci. 2021; 22(10): 5094. doi: 10.3390/ijms22105094.

9.Chen L., Teng H., JiaZ. et al. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: the most recent evidence. Crit. Rev. Food Sci. Nutr. 2017; 58(17): 2908-2924. doi: 10.1080/10408398.2017.1345853.

10.Long Z., Xiang W., He Q. et al. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: a systematic review

and

metanalysis

of

47

randomized

controlled. Fronttrials. Immunol. 2023; 14: 1024120.

doi:

10.3389/fimmu.2023.1024120.

 

 

 

 

11.Ma K.C., Schenck E.J., Pabon M.A., Choi A.K. The role of danger signals in the pathogenesis and perpetuation of critical illness. Am. J. Respir. Crit. Care Med. 2018; 197(3): 300-309. doi: 10.1164/rccm.201612-2460PP.

12.Nabar N.R. Elucidation of the cell signaling pathways mediating innate immunity and -hostpathogen interactions. Stockholm: Karolinska Institutet, 2019. 57 p.

13.Li D., Wu M. Pattern recognition receptors in health and diseases.Signal. Transduct. Ther. 2021; 6: 291. doi: 10.1038/s41392-021-00687-0.

14.Lago J.H.G., Toledo-Arruda A.C., Mernak M.et al. Structure-activity association of flavonoids in lung diseases. Molecules. 2014; 19(3): 3570-3595. doi: 10.3390/molecules19033570.

15.Kopustinskiene D.M., Jakstas V., Savickas A., Bernatoniene J. Flavonoids as anticancer agents.Nutrients. 2020; 12(2): 457. doi: 10.3390/nu12020457.

16.Liu G.H., Qu J., Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating

recruitment

of

HDAC3

to

MafBiochim. K. Biophys.

Acta.

2008;

1783(5):713-727.

doi: 10.1016/j.bbamcr.2008.01.002.

 

 

 

 

 

17.Yu M., Li H., Liu Q.et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell. Signal. 2011; 23(5): 883-892. doi: 10.1016/j.cellsig.2011.01.014.

18.Aziz N., Kim M-Y., Cho J.Y. Anti-inflammatory effects of luteolin: a review ofin vitro, in vivo, and in silico studies. J. Ethnopharmacol. 2018; 225: 342-358. doi: 10.1016/j.jep.2018.05.019.

19.Jo E-K., Kim J.K., Shin D-M., Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol. 2016; 13(2): 148-159. doi: 10.1038/cmi.2015.95.

20.Kurylowicz A., Nauman J. The role nuclear factor-κB in the development of autoimmune diseases: a link between genes and environment. Acta Biochem. Polonica. 2009; 55(4): 629-647. doi: 10.18388/abp.2008_3023.

21. Zhang J., Wu Y-J., Hu X-X., Wei W. New insights into theLck-NF-κB signaling pathway. Front. Cell. Dev. Biol. 2023; 11: 1120747. doi: 10.3389/fcell.2023.1120747.

22.Герштейн Е.С., Щербаков А.М., Ошкина Н.Е. и др. Ключевые компоненты NF-κB-сигнального пути в опухолях больных раком молочной железы. Вестник ТГУ. 2013; 18(6): 3292-3297.

23.Wilms L.C., Kleinjans J.C., Moonen E.J., Briedé J.J. Discriminative protection against hydroxyl and superoxide anion

radicals

by

quercetin

in

human

leucocytesin vitro. Toxicol. in Vitro.

2008; 22(2): 301-307.

doi:

10.1016/j.tiv.2007.09.002.

 

 

 

 

 

24.Karin M., Yamamoto Y., Wang Q.M. The IKK NF-kappa B system: a treasure trove drugdevelopment.Nat. Rev. Drug. Discov. 2004; 3(1): 17-26. doi: 10.1038/nrd1279.

25.Chen L., Teng H., JiaZ. et al. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: the most recent evidence. Crit. Rev. Food Sci. Nutr. 2018; 58(17): 2908-2924. doi: 10.1080/10408398.2017.1345853.

26.Peng H-L., Huang W-C., Cheng -SC., Liou C-J. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing -κBthe andNf ERK1/2 pathways. Int. Immunopharmacol. 2018; 60: 202-210. doi: 10.1016/j.intimp.2018.05.004.

27.Lee K-M., Kang B-S., Lee H-L. et al. Spinal NF-κB activation induces COX-2 upregulation and ontributesc to

inflammatory

pain

hypersensitivity.Eur. J. Neurosci.

2004; 19(12): 3375-3381.

doi: 10.1111/j.0953-

816X.2004.03441.x.

 

 

 

28.Chen S. Natural products triggering biological targets– a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis.Curr. Drug Targets. 2011; 12(3): 288-301. doi: 10.2174/138945011794815347.

29.Garcia-Lafuente A., Guillamón E., Villares A. et al.Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 2009; 58(9): 537-552. doi: 10.1007/s00011-009-0037-3.

30.Ji L., Du Q., Li Y., Hu W. Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-κB pathway in a rabbit model. Pharmacol. Rep. 2016; 68(5): 1054-1059. doi: 10.1016/j.pharep.2016.06.007.

31.Kim H.P., Son K.H., Chang H.W., Kang S.S. Antinflammatory plant flavonoids and cellular action mechanisms.J. Pharmacol. Sci. 2004; 96(9): 229-245. doi: 10.1254/jphs.crj04003x.

32.Serafini M., Peluso I., Raguzzini A. Session 1: Antioxidants and the immune system. Flavonoids as anti-inflammatory agents. The 3rd International Immunonutrition workshop was held at Platja D’Aro, Girona, Spain on 2124October 2009. Proc. Nutr. Soc. 2010; 69: 273-278. doi: 10.1017/S002966511000162X.

33.Ribeiro D., Freitas M., Tomé S.M. et alFlavonoids. inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation. 2015; 38(2): 858-870. doi: 10.1007/s10753-014-9995-x.

67

34. Hanáková Z., Hošek J., Kutil Z. et al. Anti-inflammatory activity of natural geranylated flavonoids: cyclooxygenase and lipoxygenase inhibitory properti s and proteomic analysisJ. Nat. Prod. 2017; 80(4): 999-1006. doi: 10.1021/acs.jnatprod.6b01011.

35.Kumar R., Caruso I.P., Ullah A. et al. Exploring the binding mechanism of flavonoid quercetin to phospholipase A2: fluorescence spectroscopy and computational approachEur. . J. Exp. Biol. 2017; 7(5): 33. doi: 10.21767/22489215.100033.

36.Novo Belchor M., Hessel Gaeta H., Fabri Bittencourt Rodrigues C. et al. Evaluation of rhamnetin as an inhibitor of the

pharmacological

effect

of

secretory

phospholipase.MoleculesA2.

2017;

22(9):

1441.

doi:

10.3390/molecules22091441.

 

 

 

 

 

 

 

37.González Mosquera D.M., Hernández Ortega Y., Fernández P.L. et al. Flavonoids fromBoldoa purpurascens inhibit proinflammatory cytokines (TNF-α and IL-6) and expression of COX-2. Phytother. Res. 2018; 32(9): 1750-1754. doi: 10.1002/ptr.6104.

38.Li H., Pan S., Xu X. Structure characteristics of flavonoids for cyclooxygenas-2 mRNA inhibition in

lipopolysaccharide-induced inflammatory macrophages.Eur. J. Pharmacol. 2019; 856: 172416. doi: 10.1016/j.ejphar.2019.172416.

39. Choy K.W., Murugan D., Leong X-F. et al. Flavonoids as natural anti-inflammatory agents targeting nuclear actorfkappa B (NFκB) signaling in cardiovascular diseases: a mini review. Front. Pharmacol. 2019; 10: 1295. doi: 10.3389/fphar.2019.01295.

40.Itoh K., Chiba T., Takahashi S., Ishii T.et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.Biochem. Biophys. Res. Commun. 1997; 236(2): 313-322. doi: 10.1006/bbrc.1997.6943.

41.Ткачев В.О., Меньщиков Е.Б., Зенков Н.К. Механизм работы сигнальной системы Nrf2/Keap1/ARE. Обзор.

Биохимия. 2011; 76(4): 502-519.

42.Magesh S., Chen Y., Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med. Res. Rev. 2012; 32(4): 687-726. dji: 10.1002/med.21257.

43.Зенков Н.К., Меньщикова Е.Б., Ткачев В.О. Редокс-чувствительная сигнальная система Keap1/Nrf2/ARE как фармакологическая мишень. Обзор. Биохимия. 2013; 78(1): 27-47.

44.O’Connel M.A., Hayes J.D. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic.Biochem. Soc. Trans. 2015; 43(4): 687-689. doi: 10.1042/BST20150060.

45.Saha S., Buttari B., Panieri E. et al.An overview of Nrf2 signaling pathway and its role in inflammation.Molecules. 2020; 25(22): 5474. doi: 10.3390/molecules25225474.

46.Shih P.H., Yeh C.T., Yen G.C. Anthocyanins induce activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 2007; 55(23): 9427-9435. doi:10.1021/jf071933i.

47.Mendonca P., Soliman K.F.A. Flavonoids activation of the transcription factor Nrf2 as a hypothesis approach for the

prevention

and

modulation

of -CoVSARS-2

infection

severity.Antioxidants. 2020; 9(8): 659.

doi:

10.3390/antiox9080659.

 

 

 

 

48.Shin S.Y., Woo Y., Hyun J. et alRelationship. between the structures of flavonoids and theirF-NκB-dependent transcriptional activities. Bioorg. Med. Chem. Lett. 2011; 21(20): 6036-6041. doi: 10.1016/j.bmcl.2011.08.077.

49.Chen C-C., Chow M-P., Huang W-C. et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB. Structure-activity relationships. Moll. Pharm. 2004; 66(3): 683-693. doi: 10.1124/mol.66.3.

50.Guardia T., Rotelli A.E., Juarez A.O., Pelzer L.E. Antinflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis .inFarmacorat . 2001; 56(9): 683-687. doi: 10.1016/s0014- 827x(01)01111-9.

51.Borghi S.M., Mizokami S.S., Pinho-Ribeiro F.A. et al.The flavonoid quercetin inhibits titanium dioxide (TiO2)- induced chronic arthritis in mice. J. Nutr. Biochem. 2018; 53: 581-595. doi: 10.1016/j.jnutbio.2017.10.010.

52.Guazelli C.F.S., Staurengo-Ferrari L., Zarpelon A.C.et al. Quercetin attenuates zymosan-induced arthritis inmice. Biomed. Pharmacother. 2018; 102: 175-184. doi: 10.1016/j.biopha.2018.03.057.

53.Yang Y., Zhang X., Xu M. et al.Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of heme oxygenase -1mediated anti-inflammatory effect. Int. Immunopharmacol. 2018; 54: 153-162. doi: 10.1016/j.intimp.2017.11.013.

54. Farzaei M.H., Singh A.K., Kumar Ret. al. Targeting inflammation by flavonoids: novel therapeutic strategy of metabolic disorders. Int. J. Mol. Sci. 2019; 20(19): 4957. doi: 10.3390/ijms20194957.

55.Hu Y., Gui Z., Zhou Y. et alQuercetin. alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of

chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med. 2019; 145: 146-160. doi: 10.1016/j.freeradbiomed.2019.09.024.

56.Kawaguchi K., Kaneko M., Miyake R. et Potental. inhibitory effect of quercetin on inflammatory responses of collagen-induced arthritis in mice.Endocr. Metab. Immune Disord. Drug Targets. 2019; 19(3): 308-315. doi: 10.2174/1871530319666190206225034.

57.Saccol R., da Silveira K.L., Manzoni A.G. et al. Effect of quercetin in a murine model of arthritis.J. Cell. Biochem. 2020; 121: 2792-2801. doi: 10.1002/jcb.29502.

68

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

58. Shen P., Lin W., aB X. et al. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J. Ethnopharmacol. 2021; 279: 114213. doi: 10.1016/j.jep.2021.114213.

59. Al-Khayri J.M., Sahana G.R., Nagella P. et alFlavonoids. as potential anti-inflammatory molecules: a review. Molecules. 2022; 27(9): 2901. doi: 10.3390/molecules27092901.

60.Tang M., Zeng Y., Peng W. et alPharmacological. aspects of natural quercetin in rheumatoid arthritis.Drug Des. Devel. Ther. 2022; 16: 2043-2053. doi: 10.2147/DDDT.S364759.

61.Wang H., Yan Y., Pathak J.L.et al. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascade. J. Cell. Mol. Med. 2023; 27(4): 515-528. doi: 10.1111/jcmm.17672.

62.Rotelli A.E., Guardia T., Juárez A.O. et al.Comparative study of flavonoids in experimental models of inflammation. Pharmacol. Res. 2003; 48(6): 601-606. doi: 10.1016/s1043-6618(03)00225-1.

63.Kwon K.H., Murakami A., Tanaka T., Ohigashi H. Dietary rutin, but not its aglycone quercetin, ameliorates dextran sulfate sodium-induced experimental colitis in mice: attenuation of -inflammatorypro gene expression.Biochem. Pharmacol. 2005; 69:.395-406. doi: 10.1016/j.bcp.2004.10.015.

64.Ju S., Ge Y., Li P. et alDietary. quercetin ameliorates experimental colitis in mouse by remodeling thefunction of

colonic macrophages via a

hemexygenaseo -1-dependent pathway Cell. Cycle. 2018; 17(1): 53–63.

doi:

10.1080/15384101.2017.1387701.

 

 

65.Mooney E.C., Holden S.E., Xia -XY. et al. Quercetin preserves oral cavity health by mitigating inflammation and microbial dysbiosis. Front. Immunol. 2021; 12: 774273. doi: 10.3389/fimmu.2021.774273.

66.Liao Y-R., Lin -YJ. Quercetin intraperitoneal administration ameliorates lipopolysacchariinducedsystemic inflammation in mice. Life Sci. 2015; 137: 89–97. doi: 10.1016/j.lfs.2015.07.015.

67.

Rehman M.U., Tahir M., Khan Aet.Q. al. Chrysin suppresses

renal carcinogenesis via amelioration of

 

hyperproliferation, oxidative stress and inflammation: plausible role of NF-kappa B. Toxicol Lett. 2013; 216(2-3): 146-

 

158.

doi:

10.1016/j.toxlet.2012.11.013.

 

68.

Patil

R.H., Babu R.L., Naveen Kumar M. et al-.inflammatoryAnti

effect of apigenin on -LPSinduced pro-

inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation. 2016; 39(1): 138-147. doi: 10.1007/s10753-015-0232-z.

69.Rosa S.I., Rios-Santos F., Balogun S.O., Martins D.T. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway.Phytomedicine. 2016; 23(1): 9-17. doi: 10.1016/j.phymed.2015.11.003.

70.Zhang X., Du Q., Yang Y.et alThe. protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed. Pharmacother. 2017; 91: 1042-1052. doi: 10.1016/j.

biopha.2017.05.033.

71. Berkoz M. Diosmin suppresses the proinflammatory mediators in lipopolysaccharide-induced RAW264.7 macrophages via NF-κB and MAPKs signal pathways. Gen. Physiol. Biophys. 2019; 38(4): 315-324. doi: 10.4149/gpb_2019010.

72.Ginwala R., Bhavsar R., Chigbu D.G.I., Khan Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus onthe anti-inflammatory activity of apigenin.Antioxidants (Basel). 2019; 8(2): 35. doi: 10.3390/antiox8020035.

73.Huang D.W., Chung C.P., Kuo Y.H. et al.Identification of compounds in adlay (Coix lachrymal-jobi L. var. ma-yuen Stapf) seed hull extracts thatinhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. J. Agric. Food Chem. 2009; 57(22): 10651-10657. doi: 10.1021/jf9028514.

74.Javel H., Vaibhav K., Ahmed M.E. et al. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidativestress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice.J. Neurol. Sci. 2015; 348(1-2): 51-59. doi: 10.1016/j.jns.2014.10.044.

75.Pinho-Ribeiro F.A., Zarpelon A.C., Mizokami S.S.et al. The citrus flavonone naringenin reduces lipopolysaccharideinduced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J. Nutr. Biochem. 2016; 33:. 8- 14. doi: 10.1016/j.jnutbio.2016.03.013.

76.Ren H., Hao J., Liu T. et al.Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells via the inhibition of NF-kappa B and activation of Nrf2/HO-1 pathways. Inflammation. 2016; 39(3): 964-973. doi: 10.1007/s10753-016-0311-9.

77.Bussmann A.J.C., Borghi S.M., Zaninelli T.H.et al. The citrus flavanone naringenin attenuates zymosaninduced-

mouse

joint

inflammation:

induction of NN

rf2

expression

in

recruited

CD45(+)

hematopoietic.

Inflammopharmacology. 2019; 27(6): 1229-1242.

doi:

10.1007/s10787-018-00561-6.

 

 

 

 

78. Li H., Pan S. Xu X. Structure

characteristics of flavonoidsoxygenasefor cyclo-2

mRNA ihibition in

lipopolysaccharide-induced

inflammatory

macrophagesEur. .

J. Pharmacol.

2019;

856: 172416.

doi:

 

10.1016/j.ejphar.2019.172416.

 

 

 

 

 

 

 

 

 

 

 

79.Qi W., Lin C., anF K. et al. Hesperidin inhibits synovial cell inflammation and macrophage polarionzat through suppression of the PI3K/AKT pathway in complete Freund’s adjuvant-induced arthritis in mice. Chem. Biol. Interact. 2019; 306: 19-28. doi: 10.1016/j.cbi.2019.04.002.

80.Tejada S., Pinya S., Martorell M. et al.Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem. 2019; 25(37): 4929-4945. doi: 10.2174/0929867324666170718104412.

69

81.Umar S., Kumar A., Sajad M. et al. Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduction in neutrophil activation and infiltration.Rheumatol. Int. 2013; 33(3): 657-663. doi:

 

10.1007/s0096-012-2430-4.

 

 

 

 

 

 

82.

Manchope M.F., Artero N.A., Fattori V. et al. Naringenin mitigates titanium dioxide (TiO2)-induced chronic arthritis

 

in mice: role

of dativeoxi

stress, cytokines,

and -κBNF. Inflamm.

Res.

2018; 67(11-12): 997-1012.

doi:

 

 

10.1007/s00011-018-1195-y.

 

 

 

 

 

 

83.

Artero N.A., Manchope M.F., Carvalho T.T.et al. Hesperidin methyl chalcone reduces the arthritis caused by TiO2 in

 

mice: targeting

inflammation,

oxidative stress,

cytokine production,

and

nociceptor sensory neuron

activation.

Molecules. 2023; 28(2): 872. doi: 10.3390/molecules28020872.

84.Lin Y.L., Lin J.K. -)(-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-κB. Mol. Pharm. 1997; 52(3): 465–472.

85.Yoneyama S., Kawai K., Tsuno N.H.et al. Epigallocatechin gallate affects human dendritic cell differentiation and maturation. J. Allergy Clin. Immunol. 2008; 121(1): 209-214. doi: 10.1016/j.jaci.2007.08.026.

86.Inoue T., Suzuki Y., Ra C. Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction.Free Radic. Biol. Med. 2010; 49(4): 632-640. doi: 10.1016/j.freeradbiomed.2010.05.015.

87.Zhong Y., Chiou Y.S., Pan M.H., Shahidi F. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG)

derivatives

in

-stimulatedLPS

murine

macrophages.Food Chem. 2012; 134(2): 742-748.

doi:

10.1016/j.foodchem.2012.02.172.

 

 

 

88.Ohishi T., Goto S., Monira P.et alAnti.-inflammatory action of green tea.Antiinflamm. Antiallergy Agents Med. Chem. 2016; 15(2): 74-90. doi: 10.2174/1871523015666160915154443.

89. Ahmed S., Marotte H., Kwan K. et al. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling

by

enhancing

soluble

130gp

production. Proc. Natl. Acad. Sci. 2008; 105(38):

14692-14697.

doi:

10.1073/PNAS.0802675105.

 

 

 

 

90. Ahmed S., Pakozdi A, Koch A.E. Regulation of interleukin-1 beta-induced chemokine production and matrix metalloproteinase 2 activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts.Arthritis Rheum. 2006; 54(8): 2393-2401. doi: 10.1002/art.22023.

91. Min S-Y, Yan M., Kim S.Bet. al. Green tea epigallocatechin-3-gallate suppresses autoimmune arthritis through indoleamine-2,3-dioxygenase expressing dendritic cells and the nuclear factor, erythroid 2-like 2 antioxidant pathway.

J. Inflamm (Lond).

2015; 12:.53. doi: 10.1186/s12950-015-0097-9.

92.Fechtner S., Singh A., Chourasia M., Ahmed S. Molecular insights into the differences in anti-inflammatory activities of green tea catechins in IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicol. Appl. Pharmacol. 2017; 329: 112-120. doi: 10.1016/j.taap.2017.05.016.

93.Lee S-Y., Jung Y.O., Ryu -GJ. et al. Epigallocatechin-3-gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper-17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling.J. Leukoc. Biol. 2016; 100(3): 559-568. doi: 10.1189/jlb.3A0514-261RR.

94.Sung S., Kwon D., Um E., Kim B. Could polyphenols help in the control of rheumatoid arthritis?Molecules. 2019; 24(8): 1599. doi: 10.3390/molecules24081589.

95.Behl T., Upadhyay T., Singh S.et al. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules. 2021; 26(21): 6570. doi: 10.3390/molecules26216570.

96.Hou D.X., Yanagita T., Uto T.et al. Anthocyanidins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: structural-activity relationship and molecular mechanisms involved. Biochem. Pharmacol. 2005; 70(3): 417-425. doi:

10.1016/j.bcp.2005.05.003.

97. Jeong J.W., Lee W,.S. Shin S.C. et alAnthocyanins. downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by NF-κB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci. 2013; 14(1): 15021515. doi: 10.3390/ijms14011502.

98.Im N.K., Jang W.J., Jeong C.H., Jeong G.S. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-kB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J. Med. Food. 2014; 17(8): 855-861. doi: 10.1089/jmf.2013.3077.

99.Liu C., Zhu L., Fukuda K. et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci. Signal. 2017; 10(467): eaaf8823. doi: 10.1126/scisignal.aaf8823.

100.Cui H-X., Chen J-H., Li J-W.et al. Protection of anthocyanin from Myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Molecules. 2018; 23(7): 1788. doi: 10.3390/molecules23071788.

101.Lee B.S., Lee C., Yang S. et Suppressiveal. effect of pelargonidin in lipopolysaccharide-induced inflammatory responses. Chem. Biol. Interact. 2019; 302: 67-73. doi: 10.1016/j.cbi.2019.02.007.

102.Decendit A., Mamani-Matsuda A., Aumont V. et al. Malvidin-3-O-beta glucoside, major grape anthocyanin, inhibits

human

macrophage-derived inflammatory mediators and decreases clinical scores

in arthritic.Biochemrats .

Pharmacol. 2013; 86(10): 1461-1467. doi

:

10.1016/j.bcp.2013.06.010.

 

103.Zhu

Y., Ling ,W.Guo H.et al.

Anti-inflammatory effect of purified dietary

anthocyanin in adults with

hypercholesterolemia: a randomized controlled trial.Nutr. Metab. Cardiovasc. Dis. 2013; 23(9): 843-849. doi: 10.1016/j.numecid.2012.06.005.

70

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/

104.Chacko B.K., Chandler R.T., Mundhekar Aet. al. Revealing anti-inflammatory mechanisms of soy isoflavones by flow: modulation of leukocyte-endothelial cell interactions. Am. J. Physiol. Heart Circ. Physiol. 2005; 289(2): H908H915. doi: 10.1152/ajpheart.00781.2004.

105.Jantaratnotai N., Utaisincharoen P., Sanvarinda P.et alPhytoestrogens. mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol. 2013; 17(2): 483-488. doi: 10.1016/j.intimp.2013.07.013.

106.Bernatoniene J., Kazlauskaite J.A., Kapustinskiene D.M. Pleiotropic effects of isoflavonesnflammationin and chronic degenerative diseases. Int. J. Mol. Sci. 2021; 22(11): 5656. doi: https: 10.3390/ijms22115656.

107.Goh Y.X., Jalil J., Lam K.W. et al.Genistein: a review on its anti-inflammatory properties. Front. Pharmacol. 2022; 13: 820969. doi: 10.3389/fphar.2022.820969.

108.Khan A.Q., Khan R., Rehman M.U. et al.Soy isoflavones (daidzein & genistein) inhibit 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced cutaneous inflammation via modulation of COX-2 and NF-κB in Swiss albino mice. Toxicology. 2012; 302(2-3): 266-274. doi: 10.1016/j.tox.2012.08.008.

109.Sakamoto Y., Kanatsu J., Toh M. et al. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPAR alpha/gamma and JNK pathways in adipocyte and macrophage -cocultures. PLoS One. 2016; 11(2): e0149676. doi: 10.1371/journal.pone.0149676.

110.Sundaram M.K., Unni S., Somvanshi P. et al.Genistein modulates signaling pathways and targets several epigenetic markers in HeLa cells. Genes (Basel). 2019; 10(12): 955. doi: 10.3390/genes10120955.

111.Yin M-S., Zhang Y-C., Xu S-H. et al. Puerarin prevents diabetic cardiomyopathyin vivo and in vitro by inhibition of inflammation. J. Asian Nat. Prod. Res. 2019; 21(5): 476-493. doi: 10.1080/10286020.2017.1405941.

112.Verdrengh M., Jonsson I.M., Holmdahl R., Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm. Res. 2003; 52(8): 341-346. doi: 10.1007/s00011-003-1182-8.

113.Ahmad S., Alam K., Hossain M.M.et al. Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol. Cell. Biochem. 2016; 423(1-2): 115-127. doi: 10.1007/s11010-016-2830-y.

114.Du N., Song L., Li Y. et al.Phytoestrogens protect joints in collagen-induced arthritis by increasing IgC glycosylation and reducing osteoclast activation. Int. Immunopharmacol. 2020; 83: 106387. doi: 10.1016/j.intimp.2020.106387.

115.Nagula R.L., Waikar S. Recent advances in topical delivery of flavonoids: a review.J. Control. Release. 2019; 296: 190-201. doi: 10.1016/j.jconrel.2019.01.029.

116.Zverev Ya.F., Rykunova A.Ya. Modern nanocarriers as a factor in increasing the bioavailability and pharmacological activity of flavonoids. Appl. Biochem. Microbiol. 2022; 58(9): 1-19. doi: 10.1134/S0003683822090149.

117.Caddeo C., Diez-Sales O., Pons R. et al. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharm. Res. 2014; 31(4): 959-968. doi: 10.1007/s11095-013-1215-0.

118.Casagrande R., Georgetti S.R., Verri W.A.Jr.

et al. Protective effect of topical formulations containing quercetin

against UVB-induced oxidative stress in

hairless .miceJ. Photochem. Photobiol. 2006; 84(1): 21-27.

doi:

 

10.1016/j.jphotobiol.2006.01.006.

 

 

 

119.Gokhale J.P., Mahajan H.S., Surana S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed. Pharm. 2019; 112: 108622. doi: 10.1016/j.biopha.2019.108622.

120.Zhang J-a., Yin Z., Ma L-w. et al. The protective effect of baicalin against UVB irradiation induced photoaging: anin vitro and in vivo study. PloS One. 2014; 9(6): e99703. doi: 10.1371/journal.pone.0099703.

121.Mir-Palomo S., Nácher A., Díez-Sales O. et al. Inhibition of skin inflammation by baicalin ultradeformable vesicles. Int. J. Pharm. 2016; 511(1): 23-29. doi: 10.1016/j.ijpharm.2016.06.136.

122.Martinez R.M., Pinho-Ribeiro F.A., Steffen V.S.et al. Topical formulation containing naringenin: efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice.PloS One. 2016; 11(1): e0146296. doi: 10.1371/journal.pone.0146296.

123.Martinez R.M., Pinho-Ribeiro F.A., Steffen V.S.et al. Topical formulation containing hesperidin methyl chalcone inhibits skin oxidative stress and inflammation induced by ultraviolet B irradiation.Photochem. Photobiol. Sci. 2016; 15(4): 554-563. doi: 10.1039/c5pp00467e.

124.Baolin L., Weiwei W., Ning T. Topical application of luteolin inhibits scratching behavior associated with allergic cutaneous reaction in mice. Planta Med. 2005; 71(5): 424-428. doi: 10.1055/s-2005-864137.

125.Pal H.C., Chamcheu J.C., Adhami V.M. et al.Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammationBr.. J. Dermatol. 2015; 172(2): 354-364. doi: 10.1111/bjd.13513.

126.Wang A., Wei J., Lu C. et al. Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κb-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019; 69: 270-278. doi: 10.1016/j.intimp.2019.01.054.

127.Bustos-Salgado P., Andrade-Carrera B., DamínguezVillegas-

V. et al. Screening

anti-inflammatory effects of

flavanones solutions. Int. J. Mol. Sci. 2021; 22(16): 8878.

doi:

10.3390/ijms22168878.

 

128.Peluso I., Miglio C., Morabito G.et al. Flavonoids and

immune

function in human: a

systematic review.Crit. Rev.

Food Sci. Nutr. 2015; 55(3): 383-395. doi: 10.1080/10408398.2012.656770.

129.Зверев Я.Ф. Флавоноиды глазами фармаколога. Особенности и проблемы фармакокинетики. Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15(2): 4-11. doi: 10.17816/RCF1524-11.

71

130.Nieman D.C., Henson D.A., Davis J.M. et al. Quercetin’s influence on exercise-induced changes in plasma cytokines

and

muscle

and

leukocyte

cytokine .mRNAJ. Appl.

Physiol. (1985). 2007;

103(5):

1728-1735.

 

doi:

 

10.1152/japplphysiol.00707.2007.

 

 

 

 

 

 

 

 

131.Nieman D.C,.

Henson D.A.,

Davis

J.Met. al. Quercetin

ingestion does not altercytokine changes in athletes

competing in

the

Western

States

Endurance .RunJ. Interferon Cytokine Res. 2007;

27(12):

1003-1011.

doi:

10.1089/jir.2007.0050.

132.Chen P., Lin W.,Deng X., et al. Potential implications of quercetin in autoimmune diseases.Front. Immunol. 2021; 12: 689044. doi: 10.3389/fimmu.2021.689044.

133.Guan F., Wang Q., Bao Y., Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv. 2021; 11(13): 7280. doi: 10.1039/d0ra08817j.

134.Long Z., Xiang W., He Q. et al. Efficacy and safety of dietary polyphenols in rheumatoid arthritis: a systematic review

and

metanalysis

of

47

randomized

controlled. Fronttrials. Immunol. 2023; 14: 1024120.

doi:

10.3389/fimmu.2023.1024120.

 

 

 

 

135.Shao Y-R., Xu D-Y., Lin J. Nutrients and heumatoidr arthritis: from the perspective of neutrophils.Front. Immunol. 2023; 14: 1113607. doi: 10.3389/fimmu.2023.1113607.

136.Mohammadi-Sartang M., Mazloom Z., Sherafatmanesh S. et al.Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2017; 71(9): 1033-1039. doi: 10.1038/ejcn.2017.55.

137.Javadi F., Ahmadzadeh A., Eghtesadi S. et al.The effect of quercetin on inflammatory factors andclinical symptoms in women with rheumatoid arthritis: a double-blind, randomized controlled trial. J. Am. Coll. Nutr. 2017; 36(1): 9-15. doi: 10.1080/07315724.2016.1140093.

138.Yang M., Luo Y., LiuT. et al. The effect of puerarin on carotid inti-media thickness in patients with active

rheumatoid

arthritis:

a

 

randomized

controlled. Clintrial.

Ther.

2018; 40(10): 1752-1764.e1.

doi:

 

10.1016/j.clinthera.2018.08.014.

 

 

 

 

 

 

139.Castilla

P., Dávalos A., Teruel

J.L.et al. Comparative effects of dietary supplementation with red grape juice and

vitamin

E

on production

of

superoxide by

circulating neutrophil

NADPH

oxidase in hemodialysis patients.Am. J.

Clin. Nutr. 2008; 87(4): 1053-1061. doi: 10.1093/ajcn/87.4.1053.

140.Farzaei M.H., Singh A.K., Kumar R.et al. Targeting inflammation by flavonoids: novel therapeutic strategy of metabolic disorders. Int. J. Mol. Sci. 2019; 20(19): 4957. doi: 10.3390/ijms20194957.

72

Рекомендовано к покупке и изучению сайтом МедУнивер - https://meduniver.com/