Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка по ЛА.docx
Скачиваний:
34
Добавлен:
13.03.2015
Размер:
419.37 Кб
Скачать

Методические рекомендации по ее изучению

Ниже по каждой теме приводится учебно-программный материал, который должен изучить студент со ссылками на рекомендованные (в качестве основной литературы) учебники и учебные пособия.

Контрольные вопросы по каждой теме представлены ниже в разделе «Вопросы для самопроверки».

Рекомендуемые по каждой теме задачи с решениями и для самостоятельной работы приводятся ниже в разделе «Задачи для самоподготовки».

Вопросы организации компьютерного тестирования, основные типы и примеры тестовых заданий по данной дисциплине рассматриваются в брошюре «Математический анализ и линейная алгебра. Методические указания по компьютерному тестированию» ([Электронные ресурсы, 3]).

Вопросы выполнения контрольных работ с частичным использованием КОПР рассматриваются в брошюре «Математика. Методические указания по проведению и выполнению контрольных работ с использованием КОПР» ([Электронные ресурсы, 4]).

Тема 1. Матрицы и определители

Понятие матрицы. Виды матриц. Равенство матриц. Действия с матрицами. Транспонирование матриц. Квадратные матрицы. Определители квадратных матриц 2-го, 3-го и n-го порядков. Алгебраическое дополнение. Свойства определителей. Теорема Лапласа. Обратная матрица и алгоритм ее вычисления. Понятия минора n-го порядка матрицы. Ранг матрицы. Вычисление ранга матрицы с помощью элементарных преобразований. Линейная комбинация, линейная зависимость и независимость строк (столбцов) матрицы. Теорема о ранге матрицы максимальном числе ее линейно-независимых строй (столбцов)1 ([1или 5, § 1.1–1.6]; [2 или 6, § 1.1 – 1.4], или [3, § 1.1 – 1.11], или [4, § 1.1 – 1.11] ).

Надо хорошо уяснить, что матрица – прямоугольная таблица, составленная из тп чисел, расположенных в т строках и п столбцах. Необходимо знать, как устанавливаются размеры матрицы и ее порядок, уметь выполнять транспонирование матриц, алгебраические операции над ними (умножение матрицы на число, сложение, вычитание, умножение матриц).

Относительные трудности возникают при усвоении операции умножения матриц. Необходимо твердо усвоить формальное правило умножения и связанное с ним условие существования произведения АВ матриц А и В: число столбцов матрицы А должно быть равно числу строк матрицы В. Одна из особенностей операции умножения матриц состоит в том, что произведение матриц в общем случае некоммутативно, т.е. АВ ВА. Если матрицы А и В не квадратные, то это свойство очевидно, так как либо одно из произведений, АВ или ВА, не существует, либо АВ и ВА – матрицы разных размеров. Даже если А и В — квадратные матрицы, в общем случае АВ ВА, в чем нетрудно убедиться на любом частном примере. Другая особенность произведения матриц состоит в том, что произведение двух ненулевых матриц или квадрат ненулевой матрицы может оказаться нулевой матрицей.

Например, можно легко показать, что произведение матриц

есть нулевая матрица (сравните: во множестве действительных чисел произведение равно нулю тогда и только тогда, когда хотя бы один из сомножителей равен нулю).

Следует четко уяснить, что если матрица – это таблица чисел, то определитель квадратной матрицы – это число, характеризующее эту матрицу и вычисляемое по определенным правилам. Необходимо уметь по этим правилам вычислять определители второго и третьего порядков.

При изучении свойств определителей особое внимание следует обратить на свойства 2, 4–6, 8 и особенно на теорему Лапласа ([1, или 5, или 3, § 1.3]). Необходимо уметь пользоваться этими свойствами при вычислении определителей четвертого и более высоких порядков.

Нужно знать определение присоединенной и обратной матриц, уметь их вычислять. Следует знать, что для существования матрицы А–1, обратной матрице А, необходимо и достаточно, чтобы матрица А была невырожденной (неособенной). Проверить правильность вычисления обратной матрицы можно, составив произведение АА–1 или А–1А. Если оно является единичной матрицей Е, то в соответствии с определением матрица А–1 вычислена правильно.

Ранг матрицы вводится в курсе как наивысший порядок отличных от нуля миноров этой матрицы. Например, ранг матрицы равен 1, т.е., так как все миноры 2-го порядка,,равны нулю, а среди миноров 1-го порядка,,и т.д. есть отличные от нуля.

При этом надо учитывать, что введенный ранее и используемый в теореме Лапласа минор элемента квадратной матрицы n-го порядка есть минор (n–1)-го порядка данной матрицы.

В общем случае для определения ранга матрицы рекомендуется использовать метод элементарных преобразований, состоящий в том, что с помощью элементарных преобразований данную матрицу А приводят к ступенчатому виду, и число ненулевых строк полученной ступенчатой матрицы есть искомый ранг матрицы А (см. [1, или 5, или 3, пример 1.13] ).

Важное значение имеет теорема о ранге матрицы, из которой следует, что ранг матрицы есть максимальное число ее линейно независимых строк (или столбцов), через которые линейно выражаются все остальные ее строки (столбцы).

Тема 2. Системы линейных уравнений

Система m линейных уравнений с n переменными (общий вид). Матрица системы. Матричная форма записи системы линейных уравнений. Совместные (определенные и неопределенные) и несовместные системы. Теорема Крамера о разрешимости системы n линейных уравнений с n переменными. Решение такой системы: а) по формулам Крамера; б) методом обратной матрицы; в) методом Гаусса. Понятие о методе Жордана-Гаусса. Теорема Кронекера-Капелли. Условие определенности и неопределенности любой совместной системы линейных уравнений. Базисные (основные) и свободные (неосновные) переменные. Базисное решение. Система линейных однородных уравнений и ее решения. Понятие о модели Леонтьева. ([1или 5, § 2.1 – 2.7]; [2 или 6, § 2.1, 2.5], или [3, § 2.1 – 2.8], или [4, § 2.1 – 2.8]).

При изучении материала темы следует освоить матричную форму записи заданной системы n линейных уравнений с n переменными и уметь переходить к этой форме от общего вида системы и наоборот. Необходимо знать и уметь объяснить, какие системы уравнений называются совместными (определенными и неопределенными) и несовместными. Надо твердо уяснить, что вопрос о разрешимости системы n линейных уравнений с n переменными устанавливается с помощью теоремы Крамера ([1, или 5, или 3, § 2.2]). Решаются же такие системы различными способами: по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Наиболее важен для практики метод Гаусса, имеющий по сравнению с другими способами решения ряд достоинств: он менее трудоемок, позволяет однозначно установить, является ли данная система определенной, неопределенной или несовместной, а в случае совместности системы – определить число ее линейно независимых уравнений и исключить «лишние».

Метод Жордана–Гаусса [2 или 5, § 2.3, пример 2.49] или [3, § 2.8, пример 2.44] позволяет быстрее, чем классический, решать систему уравнений и потому востребован в прикладных математических курсах. При этом следует иметь в виду, что в реальных прикладных задачах системы уравнений с достаточно большим числом уравнений и переменных решаются с помощью пакетов прикладных программ, например, Excel, MathCAD и др.

Практический интерес в приложениях представляет случай, когда число m уравнений системы меньше числа n переменных . Рассмотрение таких систем приводит к разбиению переменных на базисные (основные) и свободные (неосновные) переменные и выделению из общего числа решений системы базисных решений, в которых все свободные (неосновные) переменные равны нулю.

Согласно теореме Кронекера – Капелли система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы А равен рангу расширенной матрицы , т.е.. При этом, если(n – число переменных), то система определенная, если – неопределенная и имеет бесконечное множество решений.

Для решения системы m линейных уравнений с n переменными вовсе не требуется находить специально рангии, а достаточно применить метод Гаусса. Если хотя бы одно из уравнений системы на «прямом ходе» метода Гаусса приводится к виду, то система несовместная, если к виду 0=0, то система совместная и неопределенная. В последнем случае уравнения вида 0=0 исключаются из системы, а члены уравнения ссвободными переменными переносятся в правые части уравнений. Далее, используя «обратный ход» метода Гаусса, получают выраженияr базисных переменных через свободных, т.е. общее решение системы (см.[1 или 5, пример 2.4], [2 или 6, пример 2.36] или [3, примеры 2.4, 2.44]).

Следует иметь ввиду, что общее число решений совместной системы линейных уравнений бесконечно, в то время как число ее базисных решений конечно и не превосходит числа сочетаний(а точнее, гдеr – ранг матрицы системы).

Особенностью рассматриваемых далее систем однородных уравнений является то, что они всегда совместны, так как имеют, по крайней мере, нулевое решение (0, 0, ..., 0). Ненулевое решение такие системы имеют только тогда, когда ранг матрицы системы меньше числа переменных, т.е. , или, что то же самое, когда определитель матрицыА равен нулю: .

Следует отметить, что матричное уравнение , к которому сводится система линейных уравнений (А – матрица системы, Х – неизвестный столбец переменных, В – столбец свободных членов) может рассматриваться и в случае, когда Х – неизвестная матрица. Вообще матричные уравнения простейшего вида с неизвестной матрицей Х имеют вид (1),(2),(3), гдеА, В, С, Х – матрицы таких размеров, что все используемые операции возможны, а левые и правые части этих матричных уравнений представляют матрицы одинаковых размеров.

Решения матричных уравнений (1) и (2) соответственно и(еслиА – квадратная матрица, ), а матричного уравнения (3)(еслиА и С – квадратные матрицы и ,).