Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Fiziologiia

.pdf
Скачиваний:
18
Добавлен:
08.09.2023
Размер:
12.91 Mб
Скачать

Физиология человека и животных

снижении давления в аорте происходит рефлекторное увеличение частоты сердцебиений, при недостатке кислорода развивается рефлекторная тахикардия (рисунок 8.9 Б), а при дыхании чистым О2 – брадикардия (рисунок 8.9 В). Эти реакции очень чувствительны: увеличение частоты сердцебиения наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме еще не обнаруживается. Они осуществляются посредством артериальных хеморецепторов, реагирующих на изменения содержания О2 в крови. При увеличении давления и растяжения полых вен и правого предсердия частота и сила сердечных сокращений увеличиваются (рефлекс Бейнбриджа).

Рисунок 8.9. – Синоатриальные ритмы:

A – нормальный синусный ритм; Б – синусовая тахикардия; В – синусовая брадикардия

Есть еще и сопряженные кардиальные рефлексы, обусловленные раздражением рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. Например, рефлекс Гольца: урежение сердцебиений

Полесский государственный университет

Страница 191

Физиология человека и животных

(вплоть до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости (при проведении операций на брюшной полости, при нокауте у боксеров). Рефлекторная остановка сердца может быть при резком охлаждении кожи живота (например, при нырянии в холодную воду). Также брадикардия имеет место при надавливании на глазные яблоки (рефлекс Ашнера).

Влияние ЦНС на работу сердца осуществляется через регуляторное воздействие гипоталамуса, лимбической системы и коры больших полушарий. В гипоталамусе находятся высшие центры регуляции вегетативных функций, которые влияют на активность симпатической и парасимпатической систем. Лимбическая система регулирует эмоциональные реакции, которые влияют на работу сердца.

Гуморальная регуляция осуществляется через систему эндокринных желез и выделение биологически активных веществ. Прямое или опосредованное действие на сердце оказывают практически все биологически активные вещества, содержащиеся в плазме крови. Например, гормоны мозгового вещества надпочечников адреналин, норадреналин вызывают усиление и учащение сердцебиений. Кортикостероиды, вазопрессин, глюкагон, тироксин действуют слабее, чем адреналин, но также увеличивают силу сердечных сокращений.

Сердце очень чувствительно к ионному составу протекающей крови. Недостаток в крови ионов калия, например, в результате действия мочегонных препаратов, может приводить к нарушениям сердечного ритма, недостаток кальция приводит к снижению силы сердечных сокращений.

8. Гемодинамика. Функциональные особенности различных отделов сосудистого русла. Линейная и объемная скорость движения крови. Факторы, обеспечивающие непрерывность кровотока

Гемодинамика изучает закономерности движения крови по сосудам.

Функциональные группы сосудов:

1)амортизирующие, или магистральные (аорта, легочная артерия, крупные артерии): растягиваются во время систолы;

2)резистивные (сосуды сопротивления, мелкие артерии и артериолы): обладают наибольшим сопротивлением кровотоку, т.к. в их стенке содержится толстый мышечный слой, при сокращении которого уменьшается кровоток в отдельные органы или их отдельные участки;

3)обменные (капилляры), в которых происходит обмен водой, газами, неорганическими и органическими веществами между кровью и тканями;

Полесский государственный университет

Страница 192

Физиология человека и животных

4)емкостные, или аккумулирующие (вены): благодаря высокой растяжимости, они могут вмещать большие объемы крови;

5)шунтирующие – анастомозы, соединяющие между собой артерии и вены;

6)сосуды возврата крови в сердце (средние, крупные и полые вены).

Важнейшим показателем движения крови по сосудам является объемная

скорость кровотока (Q) (см. формула 1), т.е. объем крови, протекающий через поперечное сечение сосуда в единицу времени (л/мин). Движущая сила кровотока определяется энергией, задаваемой сердцем потоку крови в сосудах, и градиентом давления, т.е. разницей давления между отделами сосудистого русла: кровь течет от области высокого давления (Р1) к области низкого давления (Р2).

Сопротивление сосудов (R) противодействует движению крови. Исходя из этого,

(1)

где R – сосудистое сопротивление;

Q – объемная скорость кровотока.

Это основной закон гемодинамики: количество крови, протекающей через поперечное сечение сосуда в единицу времени, прямо пропорционально разности давления в начале и в конце сосуда и обратно пропорционально его сопротивлению.

Важно помнить, что объемная скорость кровотока в разных отделах сосудистого русла в данный момент времени одинакова, т.к. кровеносная система замкнутая, следовательно, через любое поперечное сечение ее в единицу времени проходит одно и то же количество крови: Q1 = Q2 = Qn = 4–6 л/мин.

Другим важным показателем гемодинамики является линейная скорость кровотока (V), т.е. скорость перемещения крови вдоль сосуда при ламинарном кровотоке. Она выражается в сантиметрах в секунду (см/с) (формула 2) и определяется как отношение объемной скорости кровотока (Q) к площади поперечного сечения сосуда (π r2):

(2)

Линейная скорость кровотока прямо пропорциональна объему крови и обратно пропорциональна площади поперечного сечения сосудов. При подсчете площади поперечного сечения сосудов учитывается общая сумма площади

Полесский государственный университет

Страница 193

Физиология человека и животных

просветов сосудов этого калибра (например, всех капилляров) в данном участке. Исходя из этого, наименьшим поперечным сечением обладает аорта (она

является единственным сосудом, по которому кровь выходит из сердца), а наибольшим – капилляры (их число может достигать миллиона, поэтому даже при диаметре одного капилляра в несколько мкм общая площадь их поперечного сечения в 800–1000 раз больше, чем у аорты). Соответственно и линейная скорость оказывается различной в разных участках сосудистого русла: максимальных значений линейная скорость достигает в аорте и минимальных – в капиллярах.

Систолический объем (СО) – это объем крови, выброшенный левым желудочком в аорту за 1 сокращение. В покое составляет примерно 50–60 мл. Минутный объем кровотока (МОК) – это количество крови, выброшенное сердцем в кровоток за 1 минуту. В покое примерно равен 4–6 л/мин.

Факторы, обеспечивающие венозный возврат крови к сердцу:

1.Эластичность аорты.

2.Градиент давления между артериальным и венозным руслом.

3.Сокращения скелетных мышц.

4.Отрицательное давление в грудной полости – присасывающее действие грудной клетки.

5.Наличие полулунных клапанов в венах, препятствующих обратному току крови по венам.

Время кругооборота крови

Время полного кругооборота крови, то есть возврата крови от левого желудочка через большой и малый круги кровообращения обратно в левый желудочек, составляет в покое 20–25 секунд, из которых 5–6 секунд составляет время прохождения крови по малому кругу кровообращения.

Кровяное давление и факторы, его обусловливающие. Закон Пуазейля.

Основным параметром гемодинамики является артериальное давление (АД). Артериальное давление определяется (формула 3) силой сердечного выброса (СВ)

ивеличиной общего периферического сопротивления сосудов (ОПСС):

АД = СВ×ОПСС

(3)

АД определяют (формула 4) также как результат умножения объемной скорости кровотока (Q) и сопротивления сосудов (R):

АД = Q×R

(4)

Полесский государственный университет

Страница 194

Физиология человека и животных

Сопротивление сосудов определяется по формуле Пуазейля (5):

R = 8 L ν / π r4,

(5)

где R – сопротивление, L – длина сосуда, ν – вязкость, π – 3,14, r – радиус сосуда.

Именно изменения вязкости крови и изменения радиуса сосудов в основном определяют величину сопротивления кровотоку и влияют на уровень объемного кровотока в органах.

В биологических и медицинских исследованиях обычно артериальное давление измеряют в мм ртутного столба, венозное давление – в мм водного столба. Измерение давления осуществляется в артериях с помощью прямых (кровавых) или косвенных (бескровных) методов. В первом случае – игла или катетер вводится прямо в сосуд, во втором случае используется способ пережатия сосудов конечности (плеча или запястья) манжетой (звуковой метод Короткова).

Систолическое давление – это максимальное давление, достигаемое в артериальной системе во время систолы. В норме систолическое давление в большом круге кровообращения равно в среднем120 мм рт. ст.

Диастолическое давление – минимальное давление, возникающее во время диастолы в большом круге кровообращения, в среднем составляет 80 мм рт. ст.

Пульсовое давление представляет собой разность между систолическим и диастолическим давлением и в норме составляет 40 мм ртутного столба.

Движущей силой движения крови в сосудах является давление крови, создаваемое работой сердца. Кровяное давление постепенно уменьшается по мере удаления крови от сердца. Скорость падения давления пропорциональна сопротивлению сосудов. Из аорты (где систолическое давление составляет 120 мм рт. ст.) кровь течет через систему магистральных артерий (80 мм рт. ст.) и артериол (40–60 мм рт. ст.) в капилляры (15–25 мм. рт. ст.), откуда поступает в венулы (12–15 мм рт. ст.), венозные коллекторы (3–5 мм рт. ст.) и полые вены (1– 3 мм рт. ст.).

Норма АД составляет: систолического – от 105–140 мм рт. ст., диастолического – 60–90 мм рт. ст. (Зинчук В.В. и др., 2007). Разница между ними составляет пульсовое давление, которое у здоровых людей равно примерно 45 мл. рт. ст. Более точно нормы АД рассчитывают применительно к возрасту человека (таблица 8.1):

Полесский государственный университет

Страница 195

Физиология человека и животных

Таблица 8.1. – Нормы артериального давления (АД) в зависимости от возраста, мм рт.ст. (Зинчук В.В. и др., 2005)

Возраст (в годах)

Артериальное давление (мм рт. ст.)

 

 

систолическое

диастолическое

 

 

 

 

16–20

100–120

70–80

21–40

120–130

70–80

40–60

до–140

до–90

 

 

 

Старше 60

до–140

до–90

Гипертензией называют повышение АД: систолического – свыше 140–145 мм рт. ст., диастолического – свыше 90–100 мм рт. ст. Систолическое давление в пределах 135–140 мм рт. ст. и диастолическое – 90–95 мм рт. ст. называется пограничным давлением. Гипотензия – уменьшение АД: систолического – ниже105 мм рт. ст., диастолического – ниже 60 мм рт. ст.

9. Капиллярное кровообращение и его особенности. Микроциркуляция. Представление о тонусе сосудов. Регуляция тонусов сосудов. Сосудодвигательный центр

Впонятие микроциркуляции входит кровоток в мелких сосудах и связанный

сним обмен жидкостью и растворенными веществами между кровью и тканями. В микроциркуляторную часть сосудистого русла входят артериолы, капилляры, венулы. Основную роль в обмене веществ и газов между кровью и тканями играют капилляры благодаря большому их количеству и соответственно большой суммарной их поверхности, обеспечивающей большую площадь диффузии. Диаметр капилляров составляет 4–8 мкм, длина – около 1 мм, а общее их количество может достигать 40 млрд. Соответственно общая площадь внутренней поверхности всех капилляров может быть более 100 кв.м.

Количество капилляров в органе зависит от его функции и интенсивности метаболических процессов. Больше всего капилляров – в ткани головного мозга, миокарда, печени, почек (до 2–3 тысяч в 1 кв. мм), меньше всего – в жировой, соединительной и костной тканях.

Всостоянии покоя в органе функционирует лишь часть капилляров (30– 33 %), в состоянии активности могут открыться все капилляры.

Тонус – это состояние длительного непрерывного напряжения стенок сосудов, которое определяется сократительной способностью гладких мышц стенок сосудов и эластической тягой структур сосудистой стенки. Тонус обеспечивается миогенными, нервными и гуморальными механизмами.

Полесский государственный университет

Страница 196

Физиология человека и животных

Миогенная регуляция, т.е. местная саморегуляция, обеспечивает базальный, или периферический, тонус сосудов, который сохраняется при полном отсутствии внешних нервных и гуморальных влияний. При повышении объема протекающей крови тонус сосудов посредством местной саморегуляции повышается, при уменьшении объема – снижается. Однако быстрые и значительные изменения кровообращения, возникающие в процессе приспособления организма к изменениям среды, осуществляются с помощью центральной нервной и гуморальной регуляции.

Нервная регуляция тонуса всех сосудов, кроме капилляров, осуществляется симпатической нервной системы. Симпатические волокна оказывают сосудосуживающее действие на большинство сосудов.

Гуморальная регуляция тонуса сосудов обусловлена действием гормонов и метаболитов. Ангиотензин, вазопрессин, норадреналин повышают тонус сосудов. Глюкокортикоиды усиливают эффект норадреналина. Оксид азота, брадикинин оказывают расслабляющее действие на сосуды.

Регуляция системного артериального давления обеспечивается функциональной системой, включающей в себя поведенческие реакции (например, обильное питье или острая пища, сильные эмоции способствуют увеличению артериального давления), механизмы медленного реагирования (включающие выделение жидкости почками) и механизмы быстрого реагирования (выход крови из депо, изменения тонуса сосудов). Уровень артериального давления воспринимается чувствительными механорецепторами (барорецепторами), расположенными в стенке аорты и каротидном синусе. Сигналы от них поступают в сосудодвигательный центр, расположенный в продолговатом мозге. Сосудодвигательный центр состоит из депрессорного и прессорного отделов.

Депрессорный центр снижает артериальное давление путем ослабления симпатической стимуляции сердца и уменьшения сердечного выброса, а также за счет снижения активности симпатических сосудосуживающих волокон, в результате чего сосуды расширяются и давление снижается.

Прессорный центр повышает артериальное давление вследствие активации симпатической нервной системы, что приводит к увеличению выброса крови из сердца и повышению периферического сопротивления сосудов.

Сосудодвигательные центры, кроме продолговатого мозга, находятся и в других вышележащих отделах ЦНС, например, в гипоталамусе. Стимуляция отдельных его ядер вызывает сужение сосудов и, следовательно, повышение артериального давления.

Рабочая, или функциональная гиперемия – это увеличение органного

Полесский государственный университет

Страница 197

Физиология человека и животных

кровотока, которое наблюдается при функциональной активности этого органа. Головной мозг. При массе, которая составляет около 2 % от общей массы

тела, головной мозг потребляет примерно 15 % всей крови, выбрасываемой сердцем. Мозг потребляет примерно 20 % всего кислорода и 17 % глюкозы. Уже через 5–7 с после прекращения кровообращения в мозге человек может потерять сознание. При ишемии мозга, продолжающейся более 5 мин, происходят необратимые изменения в ткани мозга из-за перекрытия микроциркуляторного русла.

Сосуды мозга способны поддерживать кровоток при колебаниях артериального давления от 60 до180 ммрт. ст. При давлении более180 мм возможны резкое расширение артерий мозга, нарушения гематоэнцефалического барьера и развитие отека головного мозга. При напряженной умственной работе кровоток в коре больших полушарий может возрастать в 2–3 раза, но только в той области мозга, которая конкретно в данный момент задействована.

Миокард. В состоянии покоя через коронарные сосуды (собственно кровеносные сосуды сердца) протекает 4–5 % всего объема крови. При интенсивной работе этот кровоток может увеличиваться в 6–7 раз. Кровоток в коронарных артериях зависит от фазы сердечного цикла: во время систолы сосуды частично пережимаются, и кровоток снижается примерно на 85 %, во время диастолы – увеличивается. Сердечная мышца очень богато снабжена капиллярами. Кроме того, миоглобин сердечной мышцы извлекает из крови 60– 75 % О2, тогда как другие ткани извлекают в среднем 25–30 %, поэтому в миокард поступает больше кислорода из того же количества протекающей крови.

Желудочно-кишечный тракт. В покое на желудочно-кишечный тракт приходится до 20 % сердечного выброса. При максимальном расслаблении сосудов кишечника кровоток в них возрастает в 8–10 раз. В течение первых 5– 30 минут после приема пищи происходит увеличение кровотока в сосудах желудочно-кишечного тракта, причем именно в тех отделах, функциональная активность которых в это время наибольшая, и сохраняется на этом уровне в течение 3–7 часов.

Кожа. Кожа снабжается кровью из артерий, расположенных в подкожной клетчатке и образующих глубокие и поверхностные сплетения. Особенностью сосудов кожи является наличие большого количества артерио – венозных анастомозов, которые играют важную роль в терморегуляции. Наибольшее их число находится в коже пальцев рук и ног, ушных раковин, кончика носа, т.е. там, где объем ткани мал по сравнению с поверхностью. Это объясняется тем, что важнейшая функция кожи – участие в терморегуляции – определяется не активностью обменных процессов в ней, а теплопереносящей функцией

Полесский государственный университет

Страница 198

Физиология человека и животных

кровотока. В покое, при оптимальной температуре внешней среды, кожа получает примерно 5–10 % сердечного выброса. Наиболее интенсивный кровоток отмечается в коже пальцев рук и ног, и при необходимости он может возрастать в 8 раз. Максимальные величины кожного кровотока у человека наблюдаются при тепловом стрессе: при продолжительном нагревании организма (температура кожи 42оС) он может достигать 8 л/мин, составляя 50–70 % сердечного выброса.

Скелетные мышцы. Большая масса скелетных мышц (около 40 % массы тела) требует значительного кровотока в них при их сокращении. В покое интенсивность кровотока в мышцах составляет 15–20 % сердечного выброса. При интенсивной работе он может увеличиваться более, чем в 20 раз. В покое открыто 20–30 % капилляров, имеющихся в мышце. При работе количество открытых капилляров возрастает в 2–3 раза.

10. Строение лимфатической системы и ее функции. Транспорт лимфы

Лимфатическая система, состоящая из лимфатических сосудов и узлов, тесно связана с кровеносной системой. Она обеспечивает обмен тканевой жидкости, перенос продуктов расщепления питательных веществ, всосавшихся из тонкой кишки, выполняет защитную, иммунную, кроветворную, регуляторную и другие функции. По лимфатическим сосудам происходит перенос (метастазирование)

опухолевых клеток и микроорганизмов.

Лимфатическая система начинается лимфатическими капиллярами (рисунок 8.10). Сливаясь, они образуют лимфатические сосуды, в просветах которых находятся клапаны, обеспечивающие ток лимфы только по направлению к сердцу и придающие лимфатическим сосудам четкообразный вид.

По

лимфатическим

Рисунок 8.10. – Лимфатическая система

 

 

 

 

 

 

Полесский государственный университет

Страница 199

Физиология человека и животных

сосудам лимфа поступает в регионарные лимфатические узлы. В узлах находятся ретикулярные волокна и ретикулярные клетки, образующие сеть, в петлях которой задерживаются инородные частицы, попадающие в лимфу (бактерии, пылевые частицы, опухолевые клетки). Из паренхимы узла в лимфу поступают лимфоциты. Лимфа из лимфатического узла по выносящим сосудам течет к лимфатическим стволам и протокам. Имеется два основных лимфатических протока – грудной и правый.

Функции лимфатической системы:

1)удаление избытка внеклеточной жидкости;

2)возврат в кровеносное русло белков и жиров, профильтровавшихся в печени и желудочно-кишечном тракте (за сутки с лимфой возвращается более100 гбелков);

3)образование и перенос лимфоцитов и других факторов иммунной

системы;

4)захват и обезвреживание инородных частиц, бактерий, опухолевых

клеток;

5)транспорт некоторых биологически активных веществ.

ТЕМА 9 ФИЗИОЛОГИЯ ДЫХАНИЯ

1.Дыхание у высших позвоночных: внешнее дыхание, газообмен в легких и тканях, транспорт газов кровью, тканевое дыхание

2.Вентиляция легких. Механика и динамика дыхательных движений. Внутриплевральное давление и его значение. Роль сурфактанта. Аэрогематический барьер

3.Показатели внешнего дыхания. Понятие о легочных объемах и емкостях. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

4.Газообмен в легких и тканях. Парциальное давление кислорода и диоксида углерода в альвеолярном воздухе, венозной и артериальной крови. Транспорт кислорода кровью

5.Механизм переноса диоксида углерода, роль карбоангидразы. Взаимосвязь между дыханием и поддержанием кислотно-щелочного равновесия крови

6.Нервные механизмы регуляции дыхания. Защитные и регуляторные дыхательные рефлексы. Хеморецепторы. Дыхание при физической нагрузке, при повышенном и пониженном атмосферном давлении

Полесский государственный университет

Страница 200