Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

mikrobiologiia

.pdf
Скачиваний:
50
Добавлен:
08.09.2023
Размер:
6.99 Mб
Скачать

151

В клетках Escherichia coli, растущих в аэробных условиях, ферменты цикла трикарбоновых кислот присутствуют в высокой концентрации; между тем при росте в анаэробных условиях их активность в 10-20 раз меньше, а образование 2- оксоглутаратдегидрогеназы бывает полностью по­давлено. Некоторые анаплеротические ферменты, такие как малатсинтаза, изоцитратлиаза и глиоксилаткарболигаза, содержатся только в тех клетках, которым они необходимы для использования имеющегося субстрата.

Факторы, регулирующие активность ферментов, разнообразны по своей природе (рис. 46). Физические факторы (температура, давление, свет, магнитное поле, электрические импульсы) оказывают менее специфическое действие, чем химические. В свою очередь действие последних также может быть разделено на несколько типов. Одни химические вещества связываются с активным центром фермента, например, субстраты, кофакторы, конкурентные ингибиторы, что приводит к изменению ферментативной активности. Другие вещества взаимодействуют со специальными участками на поверхности молекулы определенного типа фермента, не имеющими непосредственного отношения к центрам каталитической активности, но, тем не менее, приводящими к ее изменению.

Наконец, активность некоторых ферментов регулируется путем химической модификации их молекулы, в основе которой лежит ковалентное обратимое связывание с ферментом определенной группировки, что приводит к изменению его активности. У прокариот известны две ферментные системы, активность которых регулируется таким путем. Глутаминсинтетаза E.coli, катализирующая синтез глутамина, существует в двух формах, различающихся присутствием в одной из них остатка адениловой кислоты. Присоединение его с помощью ковалентной связи, катализируемое соответствующим модифицирующим ферментом, приводит (обратимо) к образованию менее активной аденилированной глутаминсинтетазы: глутаминсинтетаза (активная форма) - модифицирующий фермент - глутаминсинтетаза+АМФ (неактивная форма).

Удаление адениловой группы, ведущее к возникновению деаденилированной формы фермента, резко повышает его каталитическую активность.

152

Рис. 46 - Регуляторные воздействия на уровень клеточных метаболитов

упрокариот

2.Ингибирование по типу обратной связи. Свойства аллостерических ферментов.

Аналогичный механизм регулирования активности фермента путем присоединения и удаления остатка уксусной кислоты (ацетилирование - деацетилирование) обнаружен для цитратлиазы у фотосинтезирующей бактерии Rhodopseudomonas gelatinosa. В этом случае активна ацетилированная форма фермента.

Наиболее быстрым, точным и тонким механизмом регуляции активности ферментов является регуляция, которой подвергается определенный тип ферментов, получивших название аллостерических (термин подчеркивает особенность данного типа фермента, заключающуюся в том, что вещества, регулирующие его активность, структурно отличаются от субстрата катализируемой им ферментативной реакции). Эти ферменты, как правило, занимают ключевые позиции в обмене веществ, располагаясь в "стратегических" пунктах клеточного метаболизма - начале метаболических путей или местах разветвлений, где расходятся или сходятся несколько путей.

Аллостерические ферменты имеют каталитический и регуляторный (аллостерический) центры, пространственно разобщенные, но функционально тесно взаимосвязанные. Каталитическая активность фермента меняется в результате связывания с его регуляторным центром определенных метаболитов, называемых эффекторами. Кроме конечных продуктов данного пути, эффекторами могут быть субстраты ферментов, а также некоторые конечные продукты

153

родственных метаболических путей. Если действие эффектора приводит к понижению каталитической активности фермента, такой эффектор называется отрицательным, или ингибитором. Положительным называют эффектор, действие которого повышает каталитическую активность фермента. Положительным эффектором, или активатором, чаще всего бывает субстрат данного фермента.

Связывание эффектора с регуляторным центром приводит к изменению сродства фермента к субстрату в результате какого-то конформационного изменения фермента.

Наиболее простой случай аллостерической регуляции - регуляция первого фермента неразветвленного биосинтетического пути его конечным продуктом. Если конечный продукт накапливается в избытке, он подавляет активность первого фермента в процессе, называемом ингибированием по принципу обратной связи. Примером такого типа регулирования является ингибирование биосинтеза L-изолейцина. Первый фермент на пути синтеза L-изолейцина L- треониндезаминаза является аллостерическим и ингибируется только L- изолейцином.

Для разветвленных путей биосинтеза (а к таким относится большинство биосинтетических путей) механизмы регуляции усложняются, так как от активности первого фермента зависит биосинтез нескольких конечных продуктов. Очевидно следующее: механизмы регулирования в этом случае должны быть видоизменены таким образом, чтобы перепроизводство одного конечного продукта не приводило к прекращению синтеза других связанных с ним конечных продуктов. Выработалось несколько механизмов контроля по принципу обратной связи применительно к разветвленным биосинтетическим путям. Они сводятся к тому, что в этом случае в регулировании принимают участие все конечные продукты этих путей. Если первый этап биосинтетического пути катализируется одним ферментом, на поверхности молекулы этого фермента имеются различные регуляторные центры, с каждым из которых связывается один из конечных продуктов, выполняющих функцию эффектора.

Некоторые аллостерические ферменты существуют в виде нескольких молекулярных форм (изоферментов). Изоферменты катализируют одну и ту же реакцию, но обладают разными регуляторными свойствами. Это связано с тем, что изоферменты имеют одинаковые каталитические, но разные регуляторные центры. Каждый изофермент кодируется отдельным геном.

Существование изоферментов позволяет конечным продуктам независимо друг от друга ингибировать активность определенного изофермента, так как каждый изофермент индивидуально контролируется "своим" конечным продуктом.

Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы - клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.

Роль аллостерических ферментов в метаболизме клетки. Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро

154

реагируют на малейшие изменения внутреннего состояния клетки.

Аллостерическая регуляция имеет большое значение в следующих ситуациях:

при анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;

при катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии.

Субстраты при этом расходуются:

на реакции запасания резервных питательных веществ;

для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты;

для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.

Аллостерические эффекторы. Эффектор, вызывающий снижение (ингибирование) активности фермента, называют отрицательным эффектором, или ингибитором. Эффектор, вызьгоаюший повышение (активацию) активности ферментов, называют положительным эффектором, или активатором.

Аллостерическими эффекторами часто служат различные метаболиты. Конечные продукты метаболического пути - часто ингибиторы аллостерических ферментов, а исходные вещества - активаторы. Это так называемая гетеротропная регуляция. Такой вид аллостерической регуляции очень распространён в биологических системах.

Более редкий случай аллостерической регуляции, когда сам субстрат может выступать в качестве положительного эффектора. Такая регуляция называется гомотропной (эффектор и субстрат - одно и то же вещество). Эти ферменты имеют несколько центров связывания для субстрата, которые могут выполнять двойную функцию: каталитическую и регуляторную. Аллостерические ферменты такого типа используются в ситуации, когда субстрат накапливается в избытке и должен быстро преобразоваться в продукт (рис. 47).

Выявить ферменты с аллостерической регуляцией можно, изучая кинетику этих ферментов. Эти ферменты не подчиняются законам Михаэлиса-Ментен, они имеют характерную S-образную кривую зависимости скорости реакции от концентрации субстрата.

155

Рис. 47 - Схема, поясняющая работу аллостерического фермента.

А - действие отрицательного эффектора (ингибитора); Б - действие положительного эффектора (активатора).

Особенности строения и функционирования аллостерических ферментов:

обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;

они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;

эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;

аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной

игрупповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.

протомер, на котором находится аллостерический центр, - регуляторный протомер, в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция;

аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром

вызывает последовательное кооперативное изменение конформации всех

156

субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;

регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;

аллостерические ферменты катализируют ключевые реакции данного метаболического пути.

3. Аллостерическая регуляция центральных метаболических путей.

Локализация аллостерических ферментов в метаболическом пути. Фермент,

катализирующий превращение субстрата А в продукт В, имеет аллостерический центр для отрицательного эффектора, которым служит конечный продукт метаболического пути F. Если концентрация F увеличивается (т.е. вещество F синтезируется быстрее, чем расходуется), ингибируется активность одного из начальных ферментов. Такую регуляцию называют отрицательной обратной связью, или ретроингибированием. Отрицательная обратная связь - часто встречающийся механизм регуляции метаболизма в клетке.

Вцентральных метаболических путях исходные вещества могут быть активаторами ключевых ферментов метаболического пути. Как правило, при этом аллостерической активации подвергаются ферменты, катализирующие ключевые реакции заключительных этапов метаболического пути:

Вкачестве примера можно рассмотреть принципы регуляции гликолиза - специфического (начального) пути распада глюкозы. Один из конечных продуктов распада глюкозы - молекула АТФ. При избытке в клетке АТФ происходит ретроингибирование аллостерических ферментов фосфофруктокиназы и пируваткиназы. При образовании большого количества фруктозо-1,6-бисфосфата наблюдают аллостерическую активацию фермента пируваткиназы (рис.48).

157

Рис. 48 - Схема положительной и отрицательной регуляции катаболизма глюкозы.

Молекула АТФ участвует в ретроингибировании аллостерических ферментов фосфофруктокиназы и пируваткиназы. Фруктозе-1,6-бисфосфат - активатор метаболического пути распада глюкозы. Плюсами отмечена активация, минусами - ингибирование ферментов.

Благодаря такой регуляции осуществляется слаженность протекания метаболического пути распада глюкозы.

4. Ковалентная модификация ферментов.

Регуляция каталитической активности ферментов ассоциацией/диссоциацией протомеров. Протеинкиназы - группа ферментов,

катализирующих перенос остатка фосфорной кислоты с АТФ на специфические ОН-группы аминокислотных остатков белков (вызывают фосфорилирование белков). Механизмы активации различных протеинкиназ неодинаковы. В качестве примера регуляции каталитической активности ферментов ассоциацией или диссоциацией протомеров можно привести регуляцию активности фермента Протеинкиназы А.

Протеинкиназа А (цАМФ-зависимая) состоит из 4 субъединиц 2 типов: 2 регуляторных (R) и 2 каталитических (С). Такой тетрамер не обладает каталитической активностью. Регуляторные субъединицы имеют участки связывания для циклического 3',5'-АМФ (цАМФ), по 2 на каждую субъединицу. Присоединение 4 молекул цАМФ к 2 регуляторным субъединицам приводит к изменению конфор-мации регуляторных протомеров и к диссоциации тетрамерного комплекса, при этом высвобождаются 2 активные каталитические субъединицы. Такой механизм регуляции обратим. Отщепление молекул цАМФ от

158

регуляторных субъединиц приведёт к ассоциации регуляторных и каталитических субъединиц Протеинкиназы А с образованием неактивного комплекса (рис.49).

Рис. 49 - Регуляция активности аденилатциклазы.

Гормон (Г), взаимодействуя с рецептором (R) на поверхности клеток, приводит к уменьшению сродства ГТФ-связывающего белка (G-белка, состоящего из протомеров α, β, γ) к ГТФ и увеличению сродства к ГТФ. Присоединение молекулы ГТФ к активному центру G-белка вызывает диссоциацию комплекса на субъединицы α-ГТФ и димер βγ. Комплекс α-ГТФ активирует аденилатциклазу, что способствует синтезу из АТФ внутриклеточных регуляторных молекул цАМФ. АЦ - аденилатциклаза, ПКА - протеинкиназа А, Рi - Н3РО4 (рис.49).

159

ЛЕКЦИЯ 23. ФОРМЫ ВЗАИМООТНОШЕНИЙ МЕЖДУ МИКРООРГАНИЗМАМИ И ФАКТОРЫ, ИХ ОПРЕДЕЛЯЮЩИЕ

План:

1.Метабиоз

2.Симбиоз

3.Конкуренция,

4.Хищничество,

5.Паразитизм,

6.Антагонизм.

7.Сателлизм

Глобальная распространенность прокариот, их метаболическое разнообразие, постоянное присутствие во всех биоценозах, важнейшая роль в биогеохимических циклах является гарантией стабильного функционирования биосферы. В этом основное глобальное экологическое значение прокариот.

Экология микроорганизмов - наука о взаимоотношениях микробов друг с другом и с окружающей средой. В медицинской микробиологии объектом изучения служит комплекс взаимоотношений микроорганизмов с человеком.

Популяция – совокупность особей одного вида, обитающих в пределах определенного биотопа.

Биотоп – территориально ограниченный участок биосферы с относительно однородными условиями жизни.

Микробиоценоз – сообщество популяций микроорганизмов, обитающих в определенном биотопе.

Типы взаимоотношений микробов в биоценозах

Микроорганизмы жёстко конкурируют между собой. Это связано с тем, что обитающие в конкретном биоценозе микробы обладают принципиально сходными потребностями в источниках энергии и питания. Каждый микроорганизм приспосабливается не только к неживым субстратам, но и к другим окружающим его организмам. Подобная адаптация иногда приводит к приобретению особых метаболических свойств, наделяющих обладателя способностью занимать специфические ниши. Например, нитрифицирующие бактерии могут расти без органических источников энергии, окисляя аммиак или нитриты в качестве источника энергии в отсутствие света; другие организмы в подобных условиях не развиваются. Поэтому нитрифицирующие бактерии не испытывают биологической конкуренции. Значительная часть бактерий участвует в конкурентной борьбе, адаптируясь к сосуществованию с другими формами жизни либо вступая с ними в противодействие.

В основном эти взаимоотношения можно условно подразделить на две большие группы:

благоприятные — синергизм неблагоприятные — антагонизм.

Однако взаимоотношения между микробными сообществами далеко не всегда укладываются в рамки этих подразделений, так как они чрезвычайно

160

сложны, разносторонни и вариабельны. Изменения во взаимоотношениях происходят вследствие изменений окружающих условий существования или в результате перехода микробов из одной стадии развития в другую. Можно отметить следующие формы взаимоотношений между микроорганизмами:

Сосуществование (нейтрализм),

метабиоз,

симбиоз,

конкуренция,

хищничество,

паразитизм,

антагонизм.

сателлизм

Сосуществованием, или нейтрализмом, называется такая форма взаимоотношений, когда организмы, развиваясь совместно, не приносят друг другу ни вреда, ни пользы.

Метабиоз

В ряде биотопов, особенно в почве, некоторые микроорганизмы утилизируют продукты жизнедеятельности других; например, нитрифицирующие бактерии используют аммиак, который образуют аммонифицирующие бактерии. Подобные взаимоотношения известны как метабиоз.

Симбиоз

Симбиоз (от греч. symbiosis, совместное проживание) — совместное длительное существование микроорганизмов в долгоживущих сообществах или представляет собою множественные варианты постоянного или временного совместного существования организмов различных видов, обычно приносящие им взаимную пользу. Термин «симбиоз» впервые введён в 1879 году немецким ботаником и микробиологом Антоном де Барй (1831-1888) в применении к лишайникам.

Взаимоотношения, при которых микроорганизм располагается вне клеток хозяина (более крупного организма), известны как эктосимбиоз; при локализации внутри клеток — как эндосимбиоз.

Типичные эктосимбиотические микробы — Escherichia coli, бактерии родов Bacteroides и Bifidobacterium, Proteus vulgaris, a также другие представители кишечной микрофлоры. Как пример эндосимбиоза можно рассматривать плазмиды, обеспечивающие, например, резистентность бактерий к лекарственным средствам. Симбиотические отношения также разделяют по выгоде, получаемой каждым из партнёров.

Симбиоз может быть факультативным, когда различные виды могут существовать раздельно, но совместно развиваются лучше, чем порознь. Иногда приспособленность микроорганизмов друг к другу становится очень глубокой, и тогда они утрачивают способность жить друг без друга. Такая разновидность симбиоза называется облигатной.

Симбиоз может проявляться в виде сотрудничества, комменсализма,

метабиоза, сателлизма, синнергизма, синтрофии и мутуализма.

Соседние файлы в предмете Микробиология