Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
6
Добавлен:
20.04.2023
Размер:
4.56 Mб
Скачать

описанный механизм обычно называют реципрокным, в гомеостатической классификации эти отношения подразделяются, в зависимости от степени взаимного усиления двух взаимодействующих частей, на партнерские и союзнические отношения

[Горский, 1993].

Мы рассмотрели четыре известных в биохимии механизма регуляции обмена веществ. В специализированной литературе они описаны более подробно [Варновицкая 1969; Диксон, Уэбб, 1982; Мецлер, 1981; Ньюсхолм, Старт 1977; Уайт и др., 1981; Хватова и др., 1987; Buhl, 1982, Henderson, 1972]. Отметим, что единственным

стабилизирующим элементом, дополняющим 2-й, 4-й и производные от них механизмы, остается обычная отрицательная обратная связь, хотя и имеющая несколько разновидностей. Эта ограниченность имеет следствием ситуацию, когда привлекая весь арсенал существующих на сегодняшний день в биохимии кибернетических моделей, не удается понять, каким образом, за счет чего существует устойчивая система, образованная из двух изначально неустойчивых подсистем -

адениновой и гуаниновой. Эту систему мы предлагаем назвать аденин-гуаниновый компенсационный гомеостат, поскольку альтернативы применению гомеостатической методологии мы здесь не видим.

В самом деле, если попытаться построить модель метаболической системы пуринового обмена, используя в ней только известные в биохимии механизмы регуляции, то окажется, что реципрокный механизм может эффективно регулировать образование адениновых и гуаниновых мононуклеотидов лишь в условиях жесткого контроля всех входных параметров системы. В противном случае (ослабление ресурсного лимитирования) будет наблюдаться лавинообразное нарастание выходных параметров обоих подсистем (количества как адениновых, так и гуаниновых мононуклеотидов, а также образующихся из них производных) с последующим выходом на ограничение (потолок), находящееся уже вне этой системы. При этом

механизмы управления, присущие самой системе, окажутся вне той области параметров, где возможно их эффективное функционирование.

Впрочем, недостаточность отрицательной обратной связи осознается самими биохимиками, и даже в более широком, общеметаболическом смысле. Вот как об этом в популярной форме пишет Д.Мецлер: “Когда имеет место постоянная скорость роста клеток, регуляция по типу обратной связи может оказаться достаточной для того,

чтобы обеспечить гармоничное и пропорциональное увеличение концентрации всех составных частей. Такая ситуация наблюдается, например, на логарифмической стадии

337

роста бактерий или в случае быстро растущих эмбрионов животных, когда все необходимые для них питательные вещества поступают из относительно неизменной материнской крови. Совершенно другая ситуация наблюдается у взрослого человека, организм которого практически не растет. Метаболизм многих частей такого организма может сильно меняться во времени и в зависимости от физиологического состояния. Организм может, например, резко переходить от нормального питания к голоду или от состояния покоя к тяжелой нагрузке. Метаболизм при сильных нагрузках отличается от метаболизма при нормальной работе. Рацион, включающий жирную пищу, требует совсем другого метаболизма, чем диета, включающая большое количество углеводов.

Необходимые механизмы регуляции должны в таких случаях быстро и легко реагировать на такие изменения” (выделено нами) [Мецлер, 1980. -Т.2.- С.503].

Из приведенного примера видно, что эта проблема является одним из “узких мест” в современной биохимии. Попытаемся привлечь для ее решения теоретические разработки гомеостатики.

При изучении литературы наше внимание привлекли работы, в которых сообщалось об ингибирующем эффекте на аденилосукцинатсинтетазу метаболитов,

относящихся к гуаниновой подсистеме: ксантозинмонофосфата, ГМФ, циклического ГМФ, дезоксиГМФ, дезоксиГДФ. Этот феномен можно считать универсальным для всего живого, поскольку он был обнаружен у самых разных биологических объектов -

от одноклеточных организмов до человека [Bishop et. al. 1975; Henderson, Paterson, 1973; Lieberman, 1956: Nagy et al. 1973; Spector, Miller 1976; Van der Weyden, Kelly 1974; Wingaarden, Greenland, 1963]. Однако попытки объяснить биологический смысл такого ингибирования в литературе отсутствуют, хотя общебиологическая распространенность этого феномена должна была бы заставить задуматься о его сущности.

Известно, что ферменты способны иметь поразительно высокую специфичность в отношении субстратов и эффекторов [Диксон, Уэбб 1982]. Поэтому маловероятно, что эволюция не смогла бы создать аденилосукцинатсинтетазу, нечувствительную к метаболитам гуаниновой подсистемы. Скорее речь может идти, наоборот, об эволюционном поддержании нужной степени неспецифичности данного фермента.

С точки зрения кибернетики ингибирование аденилосукцинатсинтетазы вышеперечисленными метаболитами гуаниновой системы представляет собой

перекрестную отрицательную обратную связь, идущую с выхода (точнее, с

нескольких выходов - по числу ингибиторов) гуаниновой подсистемы на вход адениновой подсистемы. Положительная обратная связь обозначает стимулирующее

338

влияние АТФ на синтез гуаниновых мононуклеотидов, о котором мы говорили выше при обсуждении реципрокного механизма регуляции. Эта схема соответствует одному из четырех способов (перекрестному) склеивания противоположностей (см. рис. п2б.1.)

[Горский 1993].

 

 

 

 

 

 

 

 

Поддержание устойчивости

аденин-гу-

 

 

 

 

 

Х1

 

Адениновая

 

У1

 

 

 

 

 

 

подсистема

 

анинового компенсационного гомеостата осу-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ществляется следующим образом. Чем больше в

 

 

 

 

 

 

 

 

 

 

 

 

 

 

клетке

синтезируется

АТФ,

тем

сильнее

Х2

 

Гуаниновая

 

У2

становится стимулирующее влияние АТФ на

 

подсистема

 

 

 

 

 

 

синтез

гуаниновых

мононуклеотидов.

Рис. п2б.1.

Схема “склеивания”

 

Повышение содержания последних приводит к

 

адениновой и гуаниновой

 

 

подсистем по перекрестному

ингибированию синтеза АТФ из ИМФ, что

 

механизму.

 

 

 

 

 

 

уменьшает количество

АТФ,

а следовательно

и тормозит синтез гуаниновых

производных.

Однако, чтобы теоретически обосновать функционирование именно этого регуляторного механизма, следует прежде всего доказать, что аденилосукцинатсинтетазу можно отождествлять с входом адениновой подсистемы, соответствующим входу антагониста по [Горский, 1993]. На языке биохимии это означает, что аденилосукцинатсинтетаза должна быть регуляторным ферментом, лимитирующим синтез адениновых мононуклеотидов.

В синтезе адениновых мононуклеотидов из ИМФ на роль лимитирующего фермента могут претендовать аденилосукцинатсинтетаза и аденилосукцинатлиаза. Однако их сравнение показывает, что в печени аденилосукцинатсинтетаза имеет на порядок более низкую активность и в 7 раз более высокую величину Km, [Хватова и др. 1987]. В головном мозге активность аденилосукцинатсинтетазы в несколько раз ниже, чем активность аденилосукцинатлиазы [Хватова и др. 1987, Schultz, Lowenstein 1976] что подтверждается отсутствием накопления аденилосукцината в тканях мозга [Schultz, Lowenstein, 1976]. В почках крыс аденилосукцинатсинтетаза также является лимитирующим ферментом синтеза АМФ из ИМФ [Bugusky et. al/1981]. Несколько более высокая активность аденилосукцинатсинтетазы по сравнению с аденилосукцинатлиазой была обнаружена в скелетных мышцах крыс [Schultz, Lowenstein 1976]. Это обстоятельство привело авторов к выводу о лимитирующей роли аденилосукцинатлиазы в этой ткани. Однако, как показали последующие исследования, выполненные в той же лаборатории, в покоящейся мышце крыс аденилосукцинат

339

практически не обнаруживается [Goodman, Lowenstein 1977], что свидетельствует об отсутствии аденилосукцинатлиазного лимитирования. Последнее подтверждается также сравнением величин Km у данных ферментов в скелетных мышцах млекопитающих [Goodman, Lowenstein 1977, Brand, Lowenstein 1977]. Выводы,

основанные на содержании аденилосукцината и величинах Km, являются более надежными, чем сравнение активностей, поскольку при обработке гомогената тканей возможно уменьшение активности как аденилосукцинатсинтетазы, так и аденилосукцинатлиазы [Moss, Mc Givan 1975, Lowenstein 1972, Schultz, Lowenstein 1978]. Отсутствие аденилосукцинатлиазного лимитирования подтверждается тем, что врожденное снижение активности данного фермента в фибробластах людей не сопровождается изменением скорости синтеза пуринов de novo в этих клетках [Barshop et. al. 1989, 1989 a]. Таким образом аденилосукцинатсинтетазу правомерно считать входом адениновой метаболической системы, через который осуществляется регуляция по гомеостатическим механизмам.

Важно то, что эти механизмы действуют не изолированно, а в сочетании с четырьмя механизмами регуляции метаболизма, известными в классической биохимии

и нередко реализуются на одних с ними материальных носителях. Так, ингибирующий эффект на аденилосукцинатсинтетазную реакцию могут одновременно оказывать ГТФ, неорганический фосфат, аденилосукцинат, АМФ, АДФ, ксантозинмонофосфат, ГМФ, цГМФ, дезоксиГМФ, дезоксиГДФ, а также избыток ИМФ. Параллельно эта реакция может находиться и под стимулирующими влияниями, реализующимися через доступность ГТФ и посредством других механизмов (положительная прямая связь, ослабление ингибирования и т.п.). Удельный вклад каждого угнетающего и стимулирующего влияния в каждом конкретном случае (конкретный биологический вид, орган, ткань, физиологическое или патологическое состояние) различен и может быть выяснен только путем экспериментального биохимического исследования.

Регуляция взаимодействий пуриновой и пиримидиновой метаболических систем

В данном разделе рассмотрим взаимоотношения более крупных систем - пуриновой метаболической системы в целом (выше рассматривались ее части) и пиримидиновой метаболической системы. Как противоположности они могут взаимодействовать в метаболизме нуклеиновых кислот, коферментов, а также в тех случаях, когда метаболически связаны две реакции, одна из которых использует в

340

качестве источника энергии пуриновый, а другая пиримидиновый нуклеозидтрифосфат. Очевидно, из трех перечисленных случаев наиболее биологически важным является метаболизм нуклеиновых кислот, обеспечивающий работу генетического аппарата.

Ясно, что эффективность функционирования генетического аппарата во многом зависит от взаимной координации пуриновой и пиримидиновой систем, от сбалансированного синтеза соответствующих рибонуклеотидов и дезоксирибонуклеотидов. Поэтому возникает проблема расшифровки механизмов управления в сложной пурин-пиримидиновой системе, состоящей из двух более простых системпротивоположностей.

Рассмотрим один из типов компенсационных гомеостатов - “перекрест-ный” (см. рис. п2б.1.) применительно к взаимодействию пуриновой и пиримидиновой систем. Нами был предпринят ретроспективный анализ биохимической литературы с целью определения эквивалентов представленным в схеме на рисунке п2б.1. структурам в метаболизме пуринов и пиримидинов.

В биосинтезе пиримидиновых рибомононуклеотидов у низших организмов входом метаболической системы (наиболее медленным, скоростьлимитирующим ферментом) можно считать аспартаткарбамоилтрансферазу. Этот фермент, очищенный из E. coli, был одним из первых в энзимологии, у которого было четко продемонстрировано аллостерическое ингибирование конечными продуктами синтеза пиримидинов по принципу отрицательной обратной связи [Yates, Pardee, 1956].

Вместе с тем в работе [Gerhart, Pardee, 1962] показано, что 2 mM АТФ на 180%, а 2 mM дАТФ - на 167% активируют аспартаткарбамоилтрансферазу, очищенную из E. coli. Кроме того, АТФ уменьшал ингибирующий эффект ЦТФ при их совместном присутствии. Авторы статьи указывают, что физиологическая концентрация АТФ в клетке достаточна для того, чтобы вызвать определенную стимуляцию активности аспартаткарбамоилтрансферазы in vivo, но при этом они отмечают, что

физиологическое значение обнаруженного феномена осталось для них неясным

(incertain - в английском оригинале) [Gerhart, Pardee, 1962]. Авторы специализированных монографий по регуляции метаболизма [Курганов, 1978; Ньюсхолм, Старт, 1977], цитируя вышеуказанную статью, также не приводят никаких объяснений биологического значения данного эффекта АТФ.

Позднее было показано [Kelkar e.a., 1973], что максимальная активация аспартаткарбамоилтрансферазы из E. coli наблюдается при совместном присутствии

341

АТФ, ГТФ и ионов магния, что конечно же ближе к ситуации in vivo, чем селективное воздействие АТФ.

В тканях высших животных, включая млекопитающих, ключевым регуляторным ферментом является не аспартаткарбамоилтрансфераза, на которую не влияют пиримидиновые мононуклеотиды, а первый фермент их синтеза - глутаминзависимая карбамоилфосфатсинтетаза [Уайт и др., 1981]. Она находится в цитоплазме животных клеток в составе комплекса и, возможно, в одной полипептидной цепи [Фридрих, 1986] со вторым (аспартаткарбамоилтрансферазой) и третьим (дигидрооротазой) ферментами, так что в среду освобождается только продукт третьего фермента - дигидрооротовая кислота [Уайт и др., 1981; Николаев, 1989]. Катализируемая карбамоилфосфатсинтетазой реакция стимулируется аденозинтрифосфатом, поскольку для синтеза одной молекулы карбамоилфосфата необходима энергия двух молекул АТФ.

Кроме того, АТФ необходим для образования фосфорибозилпирофосфата, поэтому, как резюмируют А. Уайт и соавторы, доступность АТФ однозначно определяет скорость образования всех рибо- и дезоксирибонуклеозидтрифосфатов [Уайт и др, 1981]; в число стимулируемых таким образом реакций входят оротат-, урацил- и цитозин-фосфорибозилтрансферазные, а также все киназные реакции. Итак, независимо от филогенетических различий, АТФ стимулирует ключевые реакции биосинтеза de novo и реутилизации пиримидинов.

Поток АТФ можно считать выходным информационным каналом не только адениновой, но и всей пуриновой метаболической системы. В данном случае он служит положительной связью, направленной на входы гомеостатов пиримидиновой метаболической системы. То обстоятельство, что АТФ является одновременно и энергетическим и информационным агентом (и, разумеется, вещественным) нам кажется не исключением, а скорее правилом, распространяющимся на многие молекулярные и субмолекулярные элементы живого. В этой связи можно упомянуть хорошо аргументированное предположение В.П.Казначеева и Л.П.Михайловой о том, что при межклеточных взаимодействиях даже каждый отдельный квант светового излучения может сочетать в себе значение и сигнала и донатора энергии [Казначеев, Михайлова, 1981].

Если схема, изображенная на рисунке п2б.1. верна, то с выходов пиримидиновой метаболической системы на вход пуриновой метаболической системы, контролирующий продукцию АТФ, должна быть направлена отрицательная связь.

342

Выходами пиримидиновой системы являются потоки пиримидиновых мононуклеотидов, а искомый входной фермент, контролирующий продукцию АТФ, - это, как было показано выше, аденилосукцинатсинтетаза. Нам в ходе библиографического поиска удалось найти работу, в которой был обнаружен ингибирующий эффект на аденилосукцинатсинтетазу5 целого ряда пиримидиновых мононуклеотидов: оротидинмонофосфата (ОМФ), уридиндифосфата (УДФ), уридинмонофосфата (УМФ), цитидиндифосфата (ЦДФ), цитидинмонофосфата (ЦМФ), тимидиндифосфата (ТДФ), тимидинмонофосфата (ТМФ), дЦДФ, дЦМФ [Van der Weyden, Kelly, 1974]. Однако авторы не сделали даже попытку объяснения биологического смысла обнаруженного феномена. Объяснять его изолированно действительно трудно, но в сочетании с другим необъясненным фактом - активацией АТФ аспартаткарбамоилтрансферазы (см. выше) выстраивается следующая схема.

Та часть синтезированного в клетке АТФ, которая используется как источник энергии для образования пиримидиннуклеотидов, представляет собой энерго-информационный поток определенной мощности. У организмов, имеющих ключевым ферментом аспартаткарбамоилтрансферазу, воздействие на нее АТФ представляет собой вещественно-информационный поток, поскольку АТФ в данном случае действует как вещество (аллостерический активатор), а не как источник энергии. Эти два потока, функционирующие у разных видов организмов, представляют собой положительную перекрестную связь - чем больше их мощность, тем больше образуется пиримидиновых мононуклеотидов. Следовательно, тем сильнее будет ингибирование ими аденилосукцинатсинтетазы. Это уже другой вещественно-информационный поток, направленный перекрестно по отношению к двум вышеописанным - АТФ-ным потокам. Он пропорционален им по мощности и противоположен по знаку. Благодаря ему увеличение мощности АТФ-ных потоков приводит к снижению синтеза АТФ и наоборот, уменьшение их мощности имеет следствием усиленный синтез АТФ.

Избрав в качестве отправного пункта рассуждений любой АТФ - зависимый вход пиримидиновой системы, можно показать, что увеличение (или уменьшение) выходного потока пиримидиновых производных, регулирующегося через данный вход, приведет к последующему уменьшению (или, соответственно, увеличению) данного потока

благодаря противоположной направленности изменений потока АТФ.

5 В [Van der Weyden, Kelly, 1974] изучался фермент из человеческой плаценты, однако, скорее всего, полученные данные можно экстраполировать гораздо шире. Выше нами приведены свидетельства того, что механизмы регуляции аденилосукцинатсинтетазы универсальны для всего живого - от микроорганизмов до человека.

343

Дополнительным скоростьлимитирующим этапом при синтезе ДНК является образование дезоксирибонуклеотидов путем восстановления рибонуклеотидов [Уайт и др., 1981]. Ингибирование и активация этих реакций были детально изучены на частично очищенном рибонуклеозиддифосфатредуктазном препарате из крысиной гепатомы [Moore, 1965, Moore, Hurlbert, 1966]. Авторы, подводя итог своим экспериментальным исследованиям, выдвинули следующую схему регуляции: “Восстановление ЦДФ и УДФ активизируется АТФ; если присутствуют другие ферменты, необходимые для дальнейшего биосинтеза дТТФ, то образующийся дТТФ активизирует восстановление ГДФ, а дГТФ будет активировать восстановление АДФ. Если конечный продукт - дАТФ не потребляется, его накопление будет ингибировать все четыре реакции восстановления” [Moore, Hurlbert, 1966. - С. 4809]. Сходные данные были получены на частично очищенном рибонуклеозиддифосфатредуктазном препарате из E. coli в работах [Holmgren e.a., 1965; Larsson, Reichard, 1966, 1966a],

являющихся частью многолетних фундаментальных исследований группы П.Рейхарда. Анализ результатов перечисленных работ позволил нам, как обобщение, сформулировать следующую перекрестную гомеостатическую схему: дТТФ, способный образовываться из уридиновых и цитидиновых нуклеотидов благодаря цепочке дЦМФ

дУМФ дТМФ, даже в очень низких концентрациях резко активирует восстановление ГДФ и умеренно - восстановление АДФ. Первую из этих реакций активизируют также дТДФ, дУТФ и дТМФ. Все вместе это представляет собой положительную связь. Перекрестно по отношению к ней направлена отрицательная связь - ингибирование реакций восстановления ЦДФ и УДФ низкими концентрациями дАТФ и особенно дГТФ. Это ингибирование не зависит от концентрации фермента, времени инкубации и природы восстанавливающего агента, использованного в исследованиях [Moore, Hurlbert, 1966].

В исследованиях рибонуклеозиддифосфатредуктазной системы из экстракта куриного эмбриона активация восстановления ГДФ под действием дТТФ составила 75%. В свою очередь, пуриновые дезоксинуклеозидтрифосфаты ингибировали цитидиннуклеотидредуктазную реакцию [Reichard e.a., 1961]. Эти результаты согласуются с вышеуказанной схемой, также как и данные о стимуляции восстановления ГДФ в присутствии дЦТФ [Дебов, 1969; Reichard e.a., 1961].

Возможно, некоторое значение для “склеивания” перекрестным способом пуриновой и пиримидиновой систем имеет и другая схема: АТФ и АДФ являются, как известно, сильнейшими активаторами восстановления ЦДФ [Уайт и др., 1981; Larsson,

344

Reichard, 1966a; Moore, Hurlbert, 1966]; дЦДФ же, в свою очередь, обладает умеренным ингибирующим эффектом по отношению к аденилосукцинатсинтетазе [Van der Weyden, Kelly, 1974].

У некоторых видов, в частности у L. leichmanii восстановление пуриновых и пиримидиновых рибонуклеотидов происходит на уровне рибонуклеозидтрифосфатов. При исследовании этой рибонуклеозидтрифосфатредуктазной системы в работе [Vitols e.a., 1967] было установлено, что наиболее высокой является скорость восстановления ГТФ. Восстановление АТФ и ЦТФ было гораздо слабее, но оно активировалось до уровня ГТФ при добавлении соответственно дГТФ и дАТФ, причем аллостерически. В итоге авторы пришли к следующим выводам: "Восста-новление рибонуклеотидов рибонуклеозидтрифосфатредуктазой у L. leichmanii по-видимому, управляется замысловатым и эффективным контрольным механизмом. Так, если какой-либо дезоксирибонуклеозидтрифосфат накапливается в клетке, то он активирует образование ферментом других дезоксирибонуклеотидов. Тем самым ослабляется чрезмерная продукция данного дезоксирибонуклеотида, например дАТФ, в условиях, когда соответствующий рибонуклеотид присутствует в клетке в высокой концентрации. Взаимосвязанная зависимость активности фермента от субстрата, продукта и кофермента может таким образом эффективно осуществлять сбалансированную продукцию дезоксирибонуклеотидов в соответствии с потребностью клетки в синтезе ДНК." [Vitols e.a., 1967. - р. 3041]. Однако ключевую роль в этом контрольном механизме Е.Vitols и соавторы отвели коферменту и стимулирующим эффектам дезоксирибонуклеотидов, не придав значения тому факту, обнаруженному в их работе, что не только дАТФ активирует восстановление ЦТФ, но и дЦТФ, в свою очередь, ингибирует восстановление АТФ [Vitols e.a., 1967].

Еще раньше стимулирующий эффект АТФ на восстановление ЦТФ был обнаружен авторами исследования [Goulian, Beck, 1966]. Кроме того, в работах [Beck, 1967; Beck, Goulian, 1966] они выяснили, что восстановление каждого из четырех субстратов (ЦТФ, УТФ, АТФ и ГТФ) максимально стимулируется определенным дезоксирибонуклеозидтрифосфатом (соответственно дАТФ, дЦТФ, дГТФ и дТТФ),

который был назван прайм-эффектором [Beck, 1967] (prime - главный, основной, важнейший) . Авторы получили свидетельства того, что рибонуклеозидтрифосфатредуктаза L. leichmanii имеет один каталитический центр для всех четырех субстратов - рибонуклеозидтрифосфатов и один аллостерический центр для всех эффекторов - дезоксирибонуклеозидтрифосфатов (потоки которых являются

345

выходными параметрами пуриновой и пиримидиновой систем). В цитируемой работе была предложена следующая схема регуляции восстановления рибонуклеотидов, названная "квадратом эффекторов: "дГТФ, образующийся в результате восстановления ГТФ, активирует восстановление АТФ; образующийся дАТФ активирует восстановление ЦТФ; дЦТФ активирует восстановление УТФ; дУТФ быстро превращается в дТТФ, а дТТФ активирует восстановление ГТФ и все повторяется с начала, усиливаясь с каждым витком.

Легко заметить, что эта схема W.S.Beck, как и приведенные выше цитаты из работ других авторов, соответствует четвертому из известных в биохимии механизмов регуляции ("комбинации положительных связей" - см. предыдущий раздел). Единственным стабилизирующим механизмом вводимым в дополнение к ней, является обычная отрицательная обратная связь (в данном случае это ингибирование процесса восстановления рибонуклеотидов его продуктами - дезоксирибонуклеотидами), не являющаяся самодостаточной для устойчивой регуляции (см. выше). Как и другие авторы, W.S.Beck не обратил внимания на перекрестный феномен, который очень четко проявился в его исследовании: дАТФ в 33,1 раза активировал восстановление ЦТФ (положительная связь), а дЦТФ в 3,1 раза ингибировал восстановление АТФ (отрицательная связь). Возможно, при иных, чем у W.S.Beck, концентрациях метаболитов эти цифры будут отличаться в большую или меньшую сторону, но это уже количественные вариации параметров перекрестного компенсационного гомеостата. В самом его существовании в этой пурин-пиримидиновой системе не приходится сомневаться.

Заключение

Итак, в настоящей работе удалось экстраполировать методологию гомеостатики на биохимическую предметику и найти биохимические эквиваленты ряду ключевых категорий гомеостатики. Было показано, что адениновую и гуаниновую метаболические системы, а также пуриновую и пиримидиновую системы можно рассматривать как противоположности (в терминологии гомеостатики); наличие последних связано не с дублированием функций, а с неустойчивостью отдельно взятых систем, образующих при ”склеивании” со своей противоположностью устойчивый компенсационный гомеостат, обеспечивающий сбалансированное образование выходных продуктов. Известные до сих пор в биохимии механизмы регуляции не позволяют объяснить формирование устойчивой системы из неустойчивых подсистем.

346

Соседние файлы в папке из электронной библиотеки