Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятностей.doc
Скачиваний:
12
Добавлен:
14.08.2019
Размер:
1.52 Mб
Скачать

40. Закон распределения функции двух св.

Задача определения закона распределения функции нескольких случайных аргументов значительно сложнее аналогичной задачи для функции одного аргумента.

Имеется система двух непрерывных СВ (X, Y) с плотностью распределения f(x, y). Случайная величина Z связана с X и Y функцианальной зависимостью: Z = φ(X, Y). Требуется найти закон распределения величины Z. Функция z = φ(x, y) изображается поверхностью, а не кривой, как в случае одного аргумента. Найдем функцию распределения величины Z: G(z) = P(Z<z) = P(φ(X, Y)<z) – формула (1). Проведем плоскость Q, параллельную плоскости xOy, на расстоянии z от нее. Эта плоскость пересечет поверхность z = φ(x, y) по некоторой кривой K. Спроектируем кривую К на плоскость xOy. Эта проекция, уравнение которой φ(x, y) = z, разделит плоскость xOy на две области; для одной из них высота поверхности над плоскостью xOy будет меньше, а для другой – больше z. Обозначим D ту область, для которой эта высота меньше z. Чтобы выполнялось неравенство (1), случайная точка (X, Y), очевидно, должна попасть в область D; следовательно, G(z) = P((X,Y) D) = - формула (2). В выражение (2) величина z входит неявно, через пределы интегрирования. Дифференцируя G(z) по z, получим плотность распределения величины Z: g(z) = G'(z). Зная конкретный вид функции z = φ(x, y), можно выразить пределы интегрирования через z и написать выражение g(z) в явном виде. Для того, чтобы найти закон распределения функции двух аргументов, нет необходимости каждый раз строить поверхность z = φ(x, y) и пересекать ее плоскостью, параллельной xOy. На практике достаточно построить на плоскости xOy кривую, уравнение которой z = φ(x, y), отдать себе отчет, по какую сторону этой кривой Z<z, а по какую Z>z, и интегрировать по области D, для которой Z<z.

41. Понятие закона больших чисел.

Содержание закона больших чисел в широком смысле: при очень большом числе случайных явлений средний их рез-т практически перестает быть случайным и может быть предсказан с большой степенью определенности. В узком смысле слова под законом больших чисел в теории вероятностей понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа опытов к некоторым определенным постоянным. Простейшей из этих теорем является теорема Бернулли. Она утверждает, что при большом числе опытов частота события приближается (точнее – сходится по вероятности) к вероятности этого события. Другие, более общие формулировки, устанавливабт факт и условия сходимости по вероятности тех или иных СВ к постоянным, не случайным величинам. Закон больших чисел играет важную роль в практических применениях теории вероятности. Св-во случайных величин при определенных условиях вести себя практически как не случайные позволяет уверенно оперировать с этими величинами, предсказывать рез-ты массовых случайных явлений (это большое число выполняемых однородных опытов или большое число складывающихся случайных воздействий, порождающих в своей совокупности случайную величину, подчиненную вполне определенному закону) почти с полной опреленностью.