Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
chemistry.docx
Скачиваний:
68
Добавлен:
27.10.2018
Размер:
3.24 Mб
Скачать

1. Внутренняя энергия и 1-й закон термодинамики в переменных t, V. Тепловой эффект процесса при постоянном объеме или давлении. Калорические коэффициенты.

Первый закон (первое начало) термодинамики – это фактически закон сохранения энергии. Он утверждает: Существует аддитивная функция состояния термодинамической системы, называемая энергией, U. Энергия изолированной системы постоянна. В закрытой системе энергия может изменяться за счет: а) совершения работы W над окружающей средой (или среды над системой); б) обмена теплотой Q с окружающей средой. (дифференциальная форма), (интегральная форма).

Буква δ в уравнении отражает тот факт, что Q и W – функции перехода и их бесконечно малое изменение не является полным дифференциалом.

Первый закон справедлив для любых систем и процессов, но в случае открытых систем использовать его в форме такого уравнения нельзя, так как в процессах, сопровождающихся переносом вещества от системы к окружению или обратно, наблюдаемые изменения энергии не удается разделить на теплоту и работу. Причиной этого является тот факт, что при внесении в систему некоторого количества вещества изменяется объем системы, т.е. совершается работа расширения (сжатия), и при этом вместе с веществом поступает некоторое количество связанной с ним энтропии.

В отличие от внутренней энергии, теплота и работа не являются функциями состояния, их значения зависят от типа процесса. Работа – это упорядоченная форма передачи энергии, а теплота – неупорядоченная, связанная с хаотическим движением частиц.

В открытой системе

где последняя сумма характеризует процесс обмена веществом между системой и окружением. Эту сумму условно называют «химической работой», имея в виду работу переноса вещества из окружения в систему.

Функция µ получила название «химический потенциал»

Теплота Q – форма передачи энергии от более нагретого тела к менее нагретому, не связанная с переносом вещества и совершением работы. Зависимость теплоты от термодинамических переменных можно выразить, рассматривая внутреннюю энергию как функцию температуры и объема:

Входящие в это уравнение частные производные называют калорическими коэффициентами системы, они характеризуют:

• теплоемкость системы при постоянном объеме (или изохорную теплоемкость)

• и скрытую теплоту изотермического расширения

Помимо этих частных производных, к калорическим коэффициентам системы относятся:

Кроме изобарной и изохорной теплоемкостей в термодинамике используют также истинную и среднюю теплоемкости. Истинная теплоемкость:

Средняя теплоемкость численно равна количеству теплоты, которое надо сообщить веществу, чтобы нагреть его на 1 К:

2. Фотохимические реакции. Первичные процессы при возбуждении: фотофизические и фотохимические. Кинетика фотохимических реакций. Отличие фотохимических реакций от темновых.

Многие химические реакции происходят под действием электромагнитного излучения. Различные виды излучения способны активизировать разные виды движения в молекуле – вращательное, колебательное, электронное. Энергия одного кванта излучения связана с длиной волны λ соотношением: .

Согласно первому закону фотохимии, фотохимическое превращение может происходить только под действием того света, который поглощается веществом. Второй закон фотохимии: каждый поглощенный фотон вызывает фотохимическое возбуждение одной молекулы. Этот закон нарушается в сильных световых полях, где происходят многоквантовые процессы и одна молекула может поглотить несколько квантов излучения. При поглощении видимого или УФ света молекула переходит в возбужденное электронное состояние. Возбужденная молекула может испытать последующие превращения:

Первичные фотофизические процессы:

1. Колебательная релаксация – безызлучательный процесс, который приводит к рассеиванию (диссипации) колебательной энергии по внутренним степеням свободы в данном электронном состоянии. Колебательная релаксация происходит за время 10–11 – 10–12 с.

2. Флуоресценция – излучательный переход между состояниями одной и той же мультиплетности, например синглет-синглет. При испускании света происходит переход в исходное электронное состояние:

Частота испускаемого света меньше или равна частоте поглощаемого в первичном процессе света: νf ≤ ν. Время жизни первого синглетного состояния, из которого происходит флуоресценция, составляет обычно 10–8 – 10–9 с.

3. Внутренняя конверсия – безызлучательный переход между электронными состояниями одинаковой мультиплетности.

4. Интеркомбинационная конверсия – безызлучательный переход между электронными состояниями разной мультиплетности, например синглет – триплет.

5. Фосфоресценция – излучательный переход между состояниями разной мультиплетности. Испускание света происходит с некоторой задержкой по времени, которая необходима для того, чтобы молекула засчет безызлучательных процессов перешла в триплетное состояние. Триплетные состояния живут гораздо дольше, чем синглетные: время жизни составляет 10–6 – 102 с.

Правило Каша: флуоресценция (фосфоресценция) происходит с низшего возбужденного уровня (первого синглетного или низшего триплетного).

Поглощение света может привести к разнообразным химическим превращениям электронно-возбужденной молекулы. Примеры первичных фотохимических реакций:

Поглощение монохроматического пучка света однородной средой подчиняется закону Ламберта–Бера:

где I0 – интенсивность (энергия в единицу времени) падающего света, I – интенсивность поглощенного света, k – коэффициент поглощения, l – толщина поглощающего слоя, c – молярная концентрация вещества.

Согласно закону Вант-Гоффа, количество вещества, которое вступило в фотохимическую реакцию, пропорционально поглощенной энергии света. Из законов Ламберта–Бера и Вант-Гоффа следует выражение для скорости первичной фотохимической реакции:

где – квантовый выход реакции.

Если толщина поглощающего слоя мала, kcl << 1, то фотохимическая реакция имеет первый порядок по реагенту:

Если же толщина поглощающего света велика, kcl >> 1, то весь свет поглощается и скорость реакции определяется только величиной I0, т.е. реакция имеет нулевой порядок по реагенту:

Фотохимические реакции значительно отличаются от обычных, термических. Во-первых, в термических реакциях участвуют молекулы с равновесным распределением по энергии, при этом доля молекул, обладающих достаточным запасом энергии для преодоления энергетического барьера реакции, регулируется только температурой. В фотохимических реакциях степень возбуждения зависит в первую очередь от характеристик светового излучения – интенсивности, которая определяет число возбужденных молекул, и длины волны, которая задает энергию возбуждения. Во-вторых, фотохимические реакции могут идти по совершенно другим путям, чем термические, за счет того, что свет переводит молекулу в возбужденные электронные состояния, которые недоступны при обычном термическом воздействии.

Кинетика фотохимических реакций описывается обычными дифференциальными уравнениями, выражающими закон действующих масс. Отличие от обычных реакций с термическим возбуждением состоит в том, что скорость первичных фотохимических процессов не зависит от концентрации исходного вещества, а определяется только интенсивностью поглощенного света. Квантовый выход первичных фотопроцессов не зависит от температуры.

Билет 15

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]