Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на коллоквиум по физике.doc
Скачиваний:
27
Добавлен:
20.11.2019
Размер:
2.75 Mб
Скачать

84.Термодинамическая вероятность макроскопического состояния. Распределение молекул по объёму.

Микро состояния системы: характеризуются координатами и импульсами (или скоростями) каждой молекулы, микро состояние не доступно непосредственно наблюдателю. Макро состояние системы – это состояние системы задаваемое по средствам термодинамических параметров (PVT), это состояние доступно не посредственно наблюдению.

Термодинамическая вероятность WT макросостояний это число микросостояний(число способов) которыми реализуются данное макросостояние.

Основные положения классической статистики

  1. Молекулы представляют собой частицы которые подчиняются классическим законам механики. Энергия и другие характ. частиц изменяются непрерывно и могут принимать значения от 0 до сколь угодно больших значений.

  2. Принцип различимости тождественных частиц: молекулы обладают индивидуальностью позволяющей их отличать друг от друга.

  3. Все микросостояния системы равно вероятны.

Распределения молекул по объему

Залетела одна молекула, она может находиться как в объеме один, так и в объеме два. Математическая вероятность такого события: P1=P2=1/2.

Залетело две молекулы P1*P2=1/2*1/2=1/4. Из таблицы следует WT1/WT2=P1/P2. Равномерное распределение молекул по V является не единственно возможным, а наиболее вероятным.

Молекулы системы совершают беспорядочное движение. Сл-но, число микросостояний определяет интенсивность хаотичного движения атомов и молекул

№ микро

V1

V2

Число микро

WT (ТД вер-сть)

P (мат вер-сть)

1

12

-

1

1

1/4

2

1

2

2

1

2

2

½ равномерное распределение

3

-

12

1

1

1/4

85.Энтропия. Формула Больцмана.

Энтропия – это ф-ия состояния системы. Приведенная теплота: dQ/T, где dQ- теплота получаемая телом в изотермическом процессе, Т- температура теплоотдающего тела, если система обратима, переходит из состояния А в В, то интеграл от приведенной теплоты не зависит от пути перехода из одного состояния в другое: .

Для кругового обратимого процесса SВ=SA сл-но, , dQ/T-полный дифференциал некоторой ф-ии S, которая определяется т-ко состоянием системы и не зависит от пути, которым система пришла в это состояние, сл-но, S-это ф-ия состояния. dQ/T=dS. Термен энтропия введен Клаузисом как мера способности теплоты превращаться в другие меры энергии, энтропия обладает свойством аддитивности: S системы =сумме составляющих систему.

Энтропия идеального газа для изохоры: V=const, ΔS=Cv *ln(T2/T1).

Для изобары: P=const, ΔS=Cv *ln(T2/T1 )+ R*ln(V2/V1).

Для изотермы: T=const, ΔS=R*ln(V2/V1).

Больцман доказал (1872), что между энтропией системы и термодинамической вероятностью её состояния существует связь, которая называется формулой Больцмана: S=k*lnP, где k – постоянная Больцмана.

Формула Больцмана позволяет дать статистическое истолкование второго закона термодинамики, утверждающего, что энтропия изолированной системы не убывает: термодинамическая вероятность состояния изолированной системы при всех происходящих в ней процессах не может убывать.

Следовательно, при всяком процессе, протекающем в изолированной системе,

Изменение термодинамической вероятности ее состояния ΔР положительно или равно нулю: ΔР = Р21 ≥0

Для обратимого процесса ΔР=0 и P=const, а в случае необратимого процесса ΔР>0 и Р возрастает. Следовательно, необратимый процесс — процесс, при котором система из менее вероятного состояния переходит в более вероятное, в пределе — в равновесное состояние. Иначе его можно определить как процесс, обратный тому, при котором система из более вероятного состояния переходит в менее вероятное. Самопроизвольное протекание обратного процесса маловероятно, хотя в принципе и возможно. Чтобы он произошел, требуется одновременное протекание компенсирующего процесса во внешних телах. По второму закону термодинамики, компенсирующий процесс должен быть таким, чтобы термодинамическая вероятность состояния системы всех тел, участвующих в осуществлении обратного и компенсирующего процессов, возрастала.