Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на коллоквиум по физике.doc
Скачиваний:
28
Добавлен:
20.11.2019
Размер:
2.75 Mб
Скачать

87.Статистический смысл 2-го начал термодинамики.

Пусть все молекулы собрались в левой половине сосуда. Извне левая половина сосуда получает тепло Q, => поршень передвигается вправо, то есть за счет WT1/WT2=P1/P2, где WT1-термодинамическая вероятность распределения молекул по двум частям объема, WT2-термодинамическая вероятность того, что молекулы соберутся в одной половине сосуда этому случаю соответствует нормальное макросостояние. Рассмотрим распределение N молекул по 2 частям объема, то есть по 2 состояниям n=2. В статистической физике показано что в этом случает термодинамическая вероятность равна: WT2=N!/(N!/2∙N!/2)

Формула Стерлинга: ln N!=NlnN-N, ln WT2=lnN!-ln(N!/2)-ln(N!/2)=NlnN-N-(N/2)∙lnN/2+N/2=NlnN-NlnN/2=Nln2 => WT2=2N, P2/P1=WT2, P2/P1=2N. При V=1 см3 N=2.7∙1019. Отношение вероятности равномерного распределения P2 к вероятности Р1 того, что все молекулы P2/P1=22,7∙10^19

90.Общие сведения о явлениях переноса. Средн длина свободн пробега молекул.

Считаем, что все молекулы кроме одной неподвижны. Взаимодействие молекул происходит в рез-те удара. След-но, центр «подвижной» молекулы будет двигаться по ломаной линии. От удара до удара будет прямая линия, длина которой будет наз-ся длиной свободного пробега λi . λср=Σλi/z-средняя длина свободн пробега (z-число столкновений). Молекула на своем пути будет сталкиваться со всеми молекулами, расстояние м/у центрами которых и центром движущейся молекулы ≤d. D=R1+R2=R

R1-радиус движущейся молекулы, R2-радиус покоящейся молекулы. Если R1=R2, то 2R=d-диаметр молекулы, т.е, столкновение м/у двумя молекулами будет происходить если центры неподвижных молекул окажутся внутри объема с площадью сечения S=σ=πd2 длиной li σ=полное поперечное сечение рассеяния. Выпрямим ломаную траекторию движения молекул. В этом случае z-число молекул в объеме с длиной l равной пути пройденному движущейся молекулой за время t.

Z=N=nV=nσυt=nπd2υt n-концентрация молекул.

λiiti; Σλi=υt; λср=(Σλi/z)=υ/nπd2υ

Более точный расчет дает формулу: λср=1/√2πd2n

P=nkT=>n=p/kT

λср=kT/√2πd2p=kT/√2σp при T=сonst λ~1/p

Газ при нормальных условиях:

T=300K, p≈106дин/см2, 1дин=г*см/с2, d~2*10-8cм, σ~12*10-162 => λср=2*10-5м

l>>d газ достаточно разряжен. Общие сведения о явлениях переноса: диффузия, внутреннее трение, теплопроводность.

91. Диффузия.

Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления МКТ по вопросу диффузии возникли противоречия. Так какt молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте. Явление диффузии для химически однородного газа подчиняется закону Фика: Jm= -Ddp/dx

Где Jm - плотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси x, D - диффузия (коэффициент диффузии), dp/dx — градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки Jm и dp/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

D=⅓<υ><l>.