Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shiza.docx
Скачиваний:
1
Добавлен:
28.09.2019
Размер:
24.64 Mб
Скачать

Вопрос 34

  1. Приятие о медиаторных системах, виды медиаторов.

Вопрос 35

Медиатор – это группа химических веществ, которая принимает участие в передаче возбуждения или торможения в химических синапсах с пресинаптической на постсинаптическую мембрану.

Критерии, по которым вещество относят к группе медиаторов:

1) вещество должно выделяться на пресинаптической мембране, терминали аксона;

2) в структурах синапса должны существовать ферменты, которые способствуют синтезу и распаду медиатора, а также должны быть рецепторы на постсинаптической мембране, которые взаимодействуют с медиатором;

3) вещество, претендующее на роль медиатора, должно при очень низкой своей концентрации передавать возбуждение с пресинаптической мембраны на постсинаптическую мембрану. Классификация медиаторов:

1) химическая, основанная на структуре медиатора;

2) функциональная, основанная на функции медиатора.

Химическая классификация.

1. Сложные эфиры – ацетилхолин (АХ).

2. Биогенные амины:

1) катехоламины (дофамин, норадреналин (НА), адреналин (А));

2) серотонин;

3) гистамин.

3. Аминокислоты:

1) гаммааминомасляная кислота (ГАМК);

2) глютаминовая кислота;

3) глицин;

4) аргинин.

4. Пептиды:

1) опиоидные пептиды:

а) метэнкефалин;

б) энкефалины;

в) лейэнкефалины;

2) вещество «P»;

3) вазоактивный интестинальный пептид;

4) соматостатин.

5. Пуриновые соединения: АТФ.

6. Вещества с минимальной молекулярной массой:

1) NO;

2) CO.

Функциональная классификаци1. Возбуждающие медиаторы, вызывающие деполяризацию постсинаптической мембраны и образование возбуждающего постсинаптического потенциала:

1) АХ;

2) глютаминовая кислота;

3) аспарагиновая кислота.

2. Тормозящие медиаторы, вызывающие гиперполяризацию постсинаптической мембраны, после чего возникает тормозной постсинаптический потенциал, который генерирует процесс торможения:

1) ГАМК;

2) глицин;

3) вещество «P»;

4) дофамин;

5) серотонин

6) АТФ.

Норадреналин, изонорадреналин, адреналин, гистамин являются как тормозными, так и возбуждающими.АХ (ацетилхолин) является самым распространенным медиатором в ЦНС и в периферической нервной системе. Содержание АХ в различных структурах нервной системы неодинаково. С филогенетической точки зрения в более древних структурах нервной системы концентрация ацетилхолина выше, чем в молодых. АХ находится в тканях в двух состояниях: связан с белками или находится в свободном состоянии (активный медиатор находится только в этом состоянии).

АХ образуется из аминокислоты холин и ацетил-коэнзима А.Медиаторами в адренэргических синапсах являются норадреналин, изонорадреналин, адреналин. Образование катехоламинов идет в везикулах терминали аксона, источником является аминокислота: фенилаланин (ФА).

  1. Нейроглия, ее функции, виды глиальных клеток.

Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз­личной формы. Она обнаружена Р. Вирховым и названа им нейрог-лией, что означает «нервный клей». Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается. Различают несколько видов нейроглии, каждая из которых об­разована клетками определенного типа: астроциты, олигодендроци-ты, микроглиоциты

Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Раз­меры астроцитов 7—25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохон­дрии. Считают, что астроциты служат опорой нейронов, обеспечи­вают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полно­стью покрывая их. В итоге между нейронами и капиллярами рас­полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию. Олигодендроциты — клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендро­цитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов. Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Ис- точником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу. Одной из особенностей глиальных клеток является их способность к изменению размеров. Это свойство было обнаружено в культуре ткани при помощи киносъемки. Изменение размера глиальных кле­ток носит ритмический характер: фаза сокращения составляет 90 с, расслабления — 240 с, т. е. это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при элек­трической стимуляции глии; латентный период в этом случае весьма большой — около 4 мин. Глиальная активность изменяется под влиянием различных би­ологически активных веществ: серотонин вызывает уменьшение «пульсации» олигодендроглиоцитов, норадреналин — усиление. Фи­зиологическая роль «пульсации» глиальных клеток мало изучена, но считают, что она проталкивает аксоплазму нейрона и влияет на ток жидкости в межклеточном пространстве. Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается оли-годендроцитами, а в периферической — леммоцитами (шванновские клетки). Глиальные клетки не обладают импульсной активностью, по­добно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается боль­шой инертностью. Изменения мембранного потенциала медленны, зависят от активности нервной системы, обусловлены не синап-тическими влияниями, а изменениями химического состава меж­клеточной среды. Мембранный потенциал нейроглии равен 70— 90 мВ. Глиальные клетки способны к передаче возбуждения, распрост­ранение которого от одной клетки к другой идет с декрементом. При расстоянии между раздражающим и регистрирующим электро­дами 50 мкм распространение возбуждения достигает точки реги­страции за 30—60 мс. Распространению возбуждения между гли-альными клетками способствуют специальные щелевые контакты их мембран. Эти контакты обладают пониженным сопротивлением и создают условия для электротонического распространения тока от одной глиальной клетки к другой. Вследствие того что нейроглия очень тесно контактирует с нейронами, процессы возбуждения нервных элементов сказываются на электрических явлениях глиальных элементов. Это влияние может быть обусловлено тем, что мембранный потенциал нейрог­лии зависит от концентрации ионов К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ в нейрон усиливается, что значительно изменяет его концентрацию вокруг нейроглии и приводит к деполяризации ее клеточных мембран.

  1. Общие принципы работы ЦНС, понятие о рефлексе.

Центральная нервная система включает головной и спинной мозг, выполняющие в организме человека и животных сложнейшие функции.

Функции центральной нервной системы. 1. Центральная нервная система обеспечивает взаимную связь отдельных органов и систем, согласует и объединяет их функции. Благодаря этому организм работает как единое целое. Точность контроля за работой внутренних органов достигается существованием двусторонней круговой связи между центральной нервной системой и периферическими органами.

Центральная нервная система осуществляет связь организма с внешней средой, обеспечивает индивидуальное приспособление к внешней среде — поведение человека и животных.

Рефлекс — это осуществляемая при участии нервной системы ответная реакция организма на раздражение, исходящее из внешней или внутренней среды.

Термин “рефлекс” (от лат. reflexus — загибать назад, непроизвольный, отраженный) ввел Декарт, который, перенося выводы своих работ по диоптрике на мозг, предположил, что животные “духи”, достигая полостей желудочков, подобно лучам света отражаются на соответствующие двигательные пути.

Рефлексы являются ппособительными реакциями живого организма в осуществлении его взаимосвязей с внешней средой, а также взаимодействия между его органами и системами; эти реакции обеспечивают целостность организма и постоянство его внутренней среды (рефлекторная регуляция давления крови, уровня глюкозы в крови и т. п.).

Рефлексы лежат в основе деятельности нервной системы. По И. М. Сеченову, “все акты сознательной и бессознательной жизни по способу своего происхождения — суть рефлексы”.

Каждый рефлекс осуществляется при помощи рефлекторной дуги, строение которой отражает этапы филогенетического развития данной реакции. В процессе филогенеза наиболее простыми и древними формами являются спинальные рефлексы безусловно-рефлекторных двигательных реакций.

Рефлекторная дуга спинального рефлекса состоит, как правило, из двух-трех нейронов. Двухнейронная связь является филогенетически более древней, чем трехнейронная.

Каждая рефлекторная дуга состоит из афферентного (чувствительного) звена, начинающегося рецепторным аппаратом, и эфферентного (двигательного), заканчивающегося рабочим органом (эффектором) (см. цв. вкл., . IV, с. 32). Довольно часто между двумя указанными звеньями имеются один-два вставочных нейрона, воспринимающих импульсы от рецепторных аппаратов и перерабатывающих их в центробежные импульсы, идущие к исполнительному органу.

В вегетативной нервной системе рефлекторные эффекты могут иметь место и при наличии лишь одного нейрона. Имеется в виду аксон-рефлекс, осуществляемый без участия центральной нервной системы и представляющий собой возбуждение одной ветви аксона с распространением проксимально до места ветвления и затем снова дистально по другой его ветви (. 30).

Различают простые и сложные, приобретенные и врожденные, безусловные и условные рефлексы.

Безусловные рефлексы — это врожденные, наследственно закрепленные рефлексы, выработанные в процессе филогенеза, условные — это непостоянные, индивидуальные рефлексы, приобретенные в онтогенезе в результате взаимодействия организма с внешней средой, выработанные на базе безусловных рефлексов. Помимо простых безусловных рефлексов имеются такие сложные безусловные рефлексы, как инстинкты (пищевые, оборонительные, половые, родительские).

Интеграция и сложное переплетение безусловной рефлекторной и условно-рефлекторной деятельности создают единую целостную картину поведения, в частности двигательного поведения — непроизвольных, а также произвольных целенаправленных двигательных актов, приобретенных в течение индивидуальной жизни (профессиональные навыки и др.) и осуществляемые благодаря взаимодействию пирамидной, экстрапирамидной и координационной систем при участии коры большого мозга.

Условные рефлексы открыл И. М. Сеченов, в дальнейшем они были глубоко изучены И. П. Павловым и его школой. Исследование условных рефлексов открыло широкие перспективы в познании функций большого мозга и его самой совершенной части — коры.

  1. Принципы рефлекторной теории И.П. Павлова.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]