Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shiza.docx
Скачиваний:
1
Добавлен:
28.09.2019
Размер:
24.64 Mб
Скачать

Вопрос 24

Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мышца, и мощность, развиваемую ею при работе.Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное расстояние: А = FS. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при совершении движений — о динамической.Сила сокращения и работа, совершаемая мышцей в единицу времени (мощность), не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называется утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической работе в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голодание» и мышечное утомление прогрессивно нарастает.В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совершении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уровень умственного напряжения уменьшает мышечную выносливость.

  1. Нейро-моторная (двигательная) единица, ее виды и функции.

Нейромоторные единицы

Скелетные мышцы позвоночных животных снабжаются двигательными нервными волокнами нейронов. находящихся в передних рогах спинного мозга. Эти нервные волокна делятся на веточки, образующие нервные сплетения, расположенные между мышечными клетками, или мышечными волокнами, от которых отходят отдельные нервные волокна, соединенные с группой мышечных волокон. Каждое нервное волокно, иннервирующее группу мышечных волокон, называется нейромоторной или моторной единицей.

Различают нейромоторные единицы, участвующие в фазных движениях (сокращениях и расслаблениях) и в длительных напряжениях мышц. В скелетных мышцах, как правило, содержатся обе группы волокон. Фазные единицы разделяются на быстрые и медленные, в которых скорость проведения возбуждения в несколько раз меньше, чем в быстрых, а его возникновение и продолжительность сокращения больше. В мышцах человека, осуществляющих быстрые и точныедвижения, например в глазных мышцах, в одну моторную единицу, входит 3-6, а в мышцах пальцев рук 10-25 мышечных волокон. В мышцах, производящих медленные движения регуляции позы человека, количество мышечных волокон в одной моторной единице доходит до 2000-3000, в икроножной мышце оно составляет примерно 2000. 

В зависимости от скорости развития максимальной силы сокращения, а также от быстроты утомления различают два типа двигательных единиц:

1) быстрый, утомляемый тип;

2) медленный, мало утомляемый.

В большинстве мышц представлены два типа двигательных единиц, но в разном соотношении, которое варьирует у людей индивидуально. В спортивной физиологии людей с относительно большим процентом быстрых волокон относят к спринтерам, а обладателей большего, чем в среднем, процента медленных волокон – к стайерам. У всех людей при старении процент быстрых волокон уменьшается.

Волокна быстрых двигательных единиц относительно меньше снабжаются кровью и поэтому имеют бледно-красный цвет. Они предназначены для мощных быстрых сокращений в течение короткого времени, поскольку быстро утомляются, не поспевая из-за относительно малого кровоснабжения окислять глюкозу до конечных продуктов. Волокна медленного типа обеспечены обильной сетью кровеносных капилляров, что придаёт им тёмно-красный цвет. И, хотя они сокращаются медленнее, зато способны очень долго работать без утомления. Развиваемая ими сила составляет от 1 до 10% от силы быстрых волокон.

Тела мотонейронов двигательных единиц медленного типа имеют наименьшие размеры и самый низкий порог возбуждения, поэтому только они могут активироваться слабыми входными сигналами. Мотонейроны быстрых двигательных единиц, напротив, являются самыми крупными и, чтобы возбудить их, нужны сильные стимулы. Поэтому медленные двигательные единицы используются при любых движениях, а быстрые – только в тех случаях, когда понадобится большая сила сокращающихся мышц. Так, например, при стоянии или спокойной ходьбе сокращение мышц обеспечивает менее чем половина всех двигательных единиц – здесь сила мышечного сокращения составляет около 20% от максимальной. Для того чтобы выполнить прыжок, может потребоваться максимальная сила: в таком случае понадобится активация мотонейронов быстрых двигательных единиц.

  1. Строение и принцип функционирования нервно-мышечного синапса.

Взаимодействие человека с внешней средой не возможно представить без его мышечной системы. Производимые движения  скелетной мускулатурой необходимы как для выполнения простейших перемещений тела в пространстве, сложных манипуляций хирурга, стоматолога, выражения самых тонких чувств и мыслей с помощью речи, мимики, жестов. Работа сердца обеспечивает кровоснабжение всех органов, работа гладких мышц создает условия для нормального осуществления физиологических процессов, обеспечивающих гомеостаз, практически во всех системах: гастроинтестинальной, сердечно-сосудистой, выделительной, репродуктивной,  дыхательной. Ведущая роль скелетной мускулатуры также в производстве тепла и поддержании температуры тела. Мышцы - это «машины», преобразующие химическую энергию в механическую (работу) и тепло. Масса мышц больше чем других органов, 40-50% от массы тела.  В естественных условиях (в нашем организме) возбуждение  мышечного  волокна (или нескольких мышечных  волокон, составляющих мышцу) возникает в результате передачи возбуждения с нервного  волокна на мембрану  мышечного  в местах контакта нерва и мышцы: нервно-мышечных   синапсах .

Механизм  нервно-мышечной  передачи  Синапсы  представляют собой коммуникационные структуры, которые формируются окончанием нервного  волокна и прилегающей к нему мембраной  мышечного  волокна (пресинаптической нервной  и постсинаптической  мышечной  мембранами) (рис.2).  Рис.2.  Мионевральный  синапс .

Когда  нервный  импульс достигает окончания аксона, на деполяризованной пресинаптической мембране открываются потенциалзависимые Са2+ каналы. Вход Са2+ в аксональное расширение (пресинаптическую мембрану) способствует высвобождению химических нейромедиаторов, находящихся в виде везикул (пузырьков) из окончания аксона. Медиаторы (в  нервно-мышечном  синапсе  это всегда ацетилхолин) синтезируются в соме  нервной  клетки и путем аксонального транспорта транспортируются к окончанию аксона, где и выполняют свою роль. Медиатор диффундирует через синаптическую щель и связывается со специфическими рецепторами на постсинаптической мембране. Так как медиатором в  нервно-мышечном   синапсе  является ацетилхолин, то рецепторы постсинаптической мембраны называют холинорецепторами. В результате этого процесса на постсинаптической мембране открываются хемочувствительные Nа+-каналы, возникает деполяризация, величина которой различна, и зависит от количества выделенного медиатора. Чаще всего возникает локальный процесс, который называют потенциалом концевой пластинки (ПКП). При повышении частоты стимуляции  нервного  волокна, усиливается деполяризация пресинаптической мембраны, а, следовательно, возрастает количество выделяемого медиатора и число активированных хемочувствительных Nа+каналов на постсинаптической мембране. Таким образом, возникают ПКП, которые по амплитуде деполяризации суммируются до порогового уровня, после чего, на мембране  мышечного  волокна, окружающей  синапс , возникает ПД, который обладает способностью к распространению вдоль мембраны  мышечного  волокна. Чувствительность постсинаптической мембраны регулируется активностью фермента – ацетилхолинэстеразы (АЦХ-Э), который гидролизует медиатор АЦХ на составные компоненты (ацетил и холин) и возвращает назад – в пресинаптическую бляшку для ресинтеза. Без удаления медиатора на постсинаптической мембране развивается длительная деполяризация, которая ведет к нарушению проведения возбуждения в  синапсе  – синаптической депрессии. Таким образом, синаптическая связь обеспечивает одностороннее проведение возбуждения с нерва на мышцу, однако на все эти процессы расходуется время (синаптичекая задержка), что приводит к низкой лабильности  синапса  по сравнению с  нервным  волокном. Таким образом,  нервно-мышечный   синапс  является «выгодным» местом, куда можно воздействовать фармакологическими препаратами, изменяя чувствительность рецептора, активность фермента. Эти явления будут часто встречаться в практике врача: например, при отравлении токсином ботулизма – блокируется высвобождение медиатора АЦХ (разглаживание морщин в косметической медицине), блокада холиноререпторов (курареподобными препаратами, бунгаротоксином) нарушает открытие Nа+ каналов на постсинаптической мембране. Фосфоорганические соединения (множество инсектицидов) нарушает эффективность АЦХ-Э и вызывает длительную деполяризацию постсинаптической мембраны. В клинике используют специфические блокаторы  нервно-мышечного  проведения: блокада холинорецепторов курареподобными препаратами, сукцинилхолином и другими конкурентными ингибиторами, вытесняющими АЦХ с холинорецептора. При заболевании миастении из-за дефицита холинорецепторов на постсинаптической мембране (из-за их аутолитического разрушения) возникает прогрессирующая мышечной слабость, вплоть до полной остановки мышечных сокращений (остановка дыхания). В этом случае используют блокаторы АЦХ-Э, что приводит к увеличению длительности связывания медиатора с меньшим количеством холинорецепторов и несколько увеличивает амплитуду деполяризации постсинаптической мембраны.

  1. Классификация нервных волокон.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]