Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника лекции(Word 2003).doc
Скачиваний:
55
Добавлен:
23.09.2019
Размер:
13.46 Mб
Скачать

Искажения в усилителях.

При усилении электрических сигналов могут возникнуть частотные, фазовые, переходные искажения, а также нелинейные.

Искажением усиливаемого сигнала называют изменение его формы, вызванное несовпадением реальных и идеальных характеристик усилителя.

Искажения могут быть линейными (динамическими) и нелинейными (статическими).

Линейные искажения зависят только от частоты и бывают частотные, фазовые, переходные. Они оцениваются с помощью АЧХ, ФЧХ, и ПХ.

Нелинейные искажения возникают в усилителе из-за нелинейности динамических характеристик и зависят только от амплитуды (от частоты не зависят).

Пример появления нелинейных искажений входного сигнала Uвх.с(t) из-за нелинейности входной характеристики транзистора Iвх=f1(Uвх).

Искаженный сигнал: Iвых=f2(t).

Чем больше нелинейность передаточной характеристики усилителя, тем сильнее искажается синусоидальный сигнал, подаваемый на его вход. Искажения также возрастают с увеличением амплитуды входного сигнала.

Известно (теорема Фурье), что всякая несинусоидальная периодическая кривая может быть представлена суммой гармонических колебаний основной частоты и высших гармоник.

Нелинейные искажения порождают в выходном сигнале усилителя совершенно новые гармонические составляющие, которых не было во входном сигнале.

Количественно нелинейные искажения оценивают или коэффициентом нелинейных искажений или коэффициентом гармоник .

Схемотехника усилительных каскадов. Межкаскадные связи в усилителях.

Назначение усилителя в конечном итоге состоит в получении на заданной нагрузке требуемой мощности усиливаемого сигнала.

Обобщенная структурная схема усилителя.

В состав структурной схемы усилителя, кроме выходного каскада, отдающего определенную мощность полезного сигнала в нагрузку, как правило, входят и предварительные каскады усиления.

В зависимости от назначения усилителя выбирается определенный способ связи между каскадами в усилителе.

Существует три основных способа связи между каскадами:

- емкостная связь (связь через разделительные конденсаторы);

- непосредственная связь (гальваническая);

- трансформаторная связь (связь с помощью трансформаторов).

Наибольшее распространение в схемах усилителей переменного напряжения, и в частности в УНЧ, получила емкостная межкаскадная связь. (Такая связь не пропускает постоянную составляющую усиливаемого сигнала).

Графическая интерпретация процесса усиления сигнала транзисторной схемой с общим эмиттером.

Процесс усиления может быть получен в простейшей схеме резистивного усилителя:

Взаимосвязь электрических величин в усилителе может быть отражена:

Следует обратить внимание на то, что входное и выходное напряжения сдвинуты на 180˚, т.е. находятся в противофазе. Для получения наименьших искажений выходного сигнала рабочую точку Р следует располагать в середине отрезка АВ нагрузочной прямой, построенной в семействе выходных ВАХ транзистора.

Из схемы усилителя видно, что положение рабочей точки Р соответствует току смещения в цепи базы IБр. Для обеспечения этого режима необходимо задать требуемую величину тока смещения от источника Ек с помощью резистора RБ.

Учитывая, что Ек>>UБэр, а также, что , получим:

Следовательно,

; где и – постоянные составляющие тока базы и коллектора в выбранных рабочих точках Р’ и Р, соответственно. Такая схема смещения получила название схемы с фиксированным базовым током.

Однако такая схема обладает низкой стабильностью при изменении температуры транзистора и изменениях тока эмиттера и коллектора.

Более эффективной является схема с фиксированным напряжением смещения на базе.

RБ’ и RБ’’ – делитель напряжения.

Ток делителя Iд обычно выбирается в пределах:

- это повышает стабильность Р’ при изменениях Iб. Из схемы видно, что Rб’ Rб’’ включены параллельно (Rисточника питания мало).

А поэтому необходимо выполнение условия:

Для обеспечения стабильной работы усилителя в широком диапазоне температур необходимо принимать меры по стабилизации положения рабочей точки на ВАХ транзистора. Для этого могут быть предложены различные способы термостабилизации режима работы транзисторных каскадов:

Компенсация терморезистором Rt с Стабилизация диодом

температурным коэффициентом [Iобрд(t)≈Iкот(t)]

сопротивления

При компенсации Rt: с повышением температуры уменьшается и должен увеличиваться IБт, т.к.: , но с повышением температуры уменьшается Rt, что увеличивает шунтирующее действие Rt перехода база-эмиттер, тогда, при Ек>>Uбэт, имеем:

Для обеспечения стабильности Iбт необходимо выполнение условия

при изменении .

При термокомпенсации диодом, необходимо обеспечить идентичность температурных зависимостей обратного тока диода и обратного тока коллектора транзистора Т.

Полная компенсация будет обеспечиваться при выполнении условия:

∆Iк0т = ∆Iобр.д, где – изменение обратного тока коллектора Т;

∆Iобр.д – изменение обратного тока Д.

Эффективность стабилизации рассмотренных схем недостаточно высока, особенно в случаях, когда происходит изменение коэффициента усиления транзисторов, например, за счет температуры или при смене транзисторов.

В этом случае целесообразно применять более эффективные схемы стабилизации режимов работы по постоянному току транзисторных каскадов.

Наибольшее распространение получили схемы коллекторной и эмиттерной стабилизации.