Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника лекции(Word 2003).doc
Скачиваний:
55
Добавлен:
23.09.2019
Размер:
13.46 Mб
Скачать

Транзисторы.

В зависимости от принципа действия и конструктивных признаков транзисторы подразделяются на два больших класса:

  • биполярные

  • полевые (или униполярные, или канальные)

Термин «биполярный» указывает на то, что работа данного прибора основана на движении носителей зарядов обоих знаков (электронов и дырок).

Термин «полевой» указывает на то, что процессы в этом приборе происходят под действием управляющего поля и основаны на движении носителей заряда только одного знака (электронов или дырок)

Биполярные транзисторы.

Полупроводниковые приборы, содержащие два взаимодействующих

p-n перехода, образованных тремя слоями полупроводников, с чередующимся типом электропроводимости, обладающих усилительными свойствами и имеющих три вывода, называются биполярными транзисторами.

В зависимости от типа электропроводности наружных слоев различают транзисторы p-n-p и n-p-n типов.

транзистор pnp –типа транзистор npn –типа

(или прямой проводимости) (или обратной проводимости)

Схема транзисторов, как совокупность диодов, не отражает всех свойств транзисторов.

Э – эмиттер – область транзистора, предназначенная для инжекции («впрыскивания») неосновных носителей заряда в базовую область;

Б – база – область транзистора, предназначенная для переноса (транспортировки) инжектированных носителей к коллектору вследствие диффузии или дрейфа;

К – коллектор – область транзистора, предназначенная для экстракции («вытягивания») неосновных носителей из базы за счет поля коллекторного перехода.

Структура сплавного транзистора.

Прямая со стрелкой 115

SЭ – площадь эмиттера;

SК – площадь коллектора; SК> SЭ

Эмиттер (Э) и коллектор (К) выполняются низкоомными, а база (Б) относительно высокоомной, поэтому удельные объемные сопротивления эмиттера (ρЭ), коллектора (ρК) малы, а базы (ρБ) – велико (до сотен Ом)

Но при этом: ρЭК, а ρБ>>ρЭ.

ω – толщина базы (типичное значение ω≈0,5мкм÷1,0мкм).

Кроме того ω<<L (диффузионная длина) – база тонкая.

Концентрация примесей (степень легирования) в базе значительно меньше, чем в эмиттере и коллекторе.

В зависимости от технологии изготовления транзисторов концентрация примесей в базе может быть распределена равномерно или неравномерно.

При равномерном распределении внутреннее поле в базе отсутствует, в результате неосновные носители в ней движутся за счет диффузии. Такие транзисторы называются диффузионными или бездрейфовыми.

При неравномерном распределении – в базе имеестя внутреннее электрическое поле, в результате неосновные носители движутся в ней как за счет дрейфа, так и диффузии, однако, дрейфовое движение превалирует. Такие транзисторы называют дрейфовыми.

В зависимости от выполняемой функции в электронных устройствах транзистор может работать в трех режимах:

  • активный режим;

  • режим отсечки;

  • режим насыщения.

Каждый из режимов определяется соотношением полярностей напряжений, подаваемых на электроды транзистора.

Активный режим характеризуется прямым напряжением на переходе база-эмиттер (БЭ) и обратным напряжением на переходе коллектор-база (КБ).

Режим отсечкиобратное напряжение на переходе БЭ и обратное напряжение на переходе КБ.

Режим насыщенияпрямое напряжение на переходе БЭ и прямое напряжение на переходе КБ.

Активный режим наиболее распространен и используется для усиления аналоговых сигналов.

Режимы отсечки и насыщения наиболее часто используются для усиления дискретных сигналов и при реализации ключевых устройств, в т.ч. в устройствах, выполняющих логические функции.

В любых схемах с транзисторами, как правило, образуются две цепи: входная и выходная, которым соответствуют условные обозначения для токов, напряжений и мощностей:

Iвх ; Uвх ; Pвх (или I1 , U1 , P1 ) – для входной цепи;

Iвых ; Uвых ; Pвых (или I2 , U2 , P2 ) – для выходной цепи.

Принцип действия транзистора. Механизм усиления мощности.

Ек >> Еэ

UБЭ>0; UКБ<0 – активный режим

ЕЭ – включено в прямом направлении;

ЕК – включено в обратном направлении (запорном).

Вследствие малого значения потенциального барьера эмиттерного перехода происходит перемещение электронов из эмиттера в базу. Электроны, попав в базу, для которой они являются неосновными носителями, частично рекомбинируют с дырками базы. Поскольку область базы выполнена из p-полупроводника с малым содержанием акцепторных примесей, поэтому лишь немногие электроны, попавшие в базу рекомбинируют с её дырками. Большинство электронов (до99,8%) под действием диффузии успевают дойти до коллекторного перехода. Здесь электроны попадают в зону действия электрического поля, созданного контактной разностью потенциалов и внешним напряжением ЕК , приложенном к участку база-коллектор. Поэтому пришедшие в базу электроны (неосновные носители) поступают в коллектор, создавая ток коллектора. Таким образом, поток электронов, инжектируемых эмиттером, распределятся в транзисторе между базой и коллектором, в результате:

IЭ=IК+IБ

Очевидно, что IК< IЭ , поэтому между током коллектора, который порождается током эмиттера может быть установлена взаимосвязь:

IКIЭ ,

где α – коэффициент передачи тока эмиттера.

Величина α зависит в основном от двух коэффициентов:

,

где γ – коэффициент инжекции носителей заряда;

– коэффициент переноса через базу инжектированных носителей.

,

где и - удельные сопротивления эмиттера и базы, соответственно. Поскольку , поэтому близко к 1.

(после разложения в ряд Тейлора и учета, что )

- толщина базы;

L – средняя диффузионная длина.

Для диффузионного транзистора выполняется соотношение:

, поэтому

, тогда

Кроме тока, вызванного инжектированными в базу неосновными носителями заряда, через коллекторный p-n переход, смещённый в обратном направлении, протекает обратный неуправляемый ток коллектора (или иногда ).

Поэтому полный ток коллектора будет:

IКIЭ+IК0.

Зная, что , определим коэффициент передачи тока базы в коллектор (β).

.

Найдём соотношение между α и β. Из полученных ранее соотношений IБ= IЭ- IК , тогда

Учитывая, что , получим

.

Поскольку α близко к единице, β имеет значение от десятков до сотен единиц (10÷100)

Преобразуя выражение с учетом, что IЭ=IК+IБ получим:

;

;

;

Слагаемое обычно обозначают и называют начальным (сквозным) током коллектора.

Очевидно, что в десятки раз больше . Таким образом, зависимость тока коллектора от тока базы может быть определена:

.

Произведем оценку усиления мощности транзистором в рассмотренной схеме включения.

Будем считать, что переход БЭ является входом транзисторной схемы,а переход КБ – выходом.

В таком случае коэффициент усиления мощности (Кр) будет определяться:

Ток IЭ является входным током Iвх, а UБЭЭ является входным напряжением.

Ток IК является выходным током Iвых, а UКБК является выходным напряжением.

Переход БЭ включён в прямом направлении, а значит IЭ=f(UБЭ) или Iвх=f(Uвх), поэтому РвхБЭ= IЭ·UБЭ= Iвх·Uвх= IЭ· ЕЭ, при этом UБЭЭ мало (UБЭ<1В).

Переход КБ включен в обратном направлении и РвыхКБ= IК·UКБ= Iвых·Uвых= IК·ЕК, при этом UКБК - может быть велико, вплоть до напряжения пробоя (UКБ>>1).

Тогда .

Поскольку значение α близко к единице, а ЕК >>ЕЭ , то

Поэтому будет значительно больше единицы, следовательно: