Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ЦО АВС2.doc
Скачиваний:
55
Добавлен:
07.09.2019
Размер:
8.2 Mб
Скачать

1.6 Рекурсивные фильтры

Высококачественные частотные нерекурсивные цифровые фильтры (НЦФ) имеют, как правило, большую ширину окна (многочленный оператор фильтра). Чем меньше допустимая ширина переходной зоны частотной характеристики фильтра между полосами пропускания и подавления, тем больше окно фильтра. Альтернативное решение - применение рекурсивных цифровых фильтров (РЦФ), для которых количество коэффициентов фильтра может быть существенно сокращено по сравнению с НЦФ.

Фильтры, которые описываются полным разностным уравнением (4.2), принято называть рекурсивными цифровыми фильтрами (РЦФ), так как в вычислении текущих выходных значений участвуют не только входные данные, но и значения выходных данных фильтрации, вычисленные в предшествующих циклах расчетов. С учетом последнего фактора рекурсивные фильтры называют также фильтрами с обратной связью, положительной или отрицательной в зависимости от знака суммы коэффициентов am. Рекурсивные фильтры имеют определенную "память" по значениям предыдущих отсчетов, которая, в пределе, может быть бесконечной. С учетом этого фактора рекурсивные фильтры получили название фильтров с бесконечной импульсной характеристикой (БИХ-фильтров), в отличие от нерекурсивных фильтров, всегда имеющих конечную импульсную характеристику (КИХ-фильтры).

По существу, полное окно рекурсивного фильтра состоит из двух составляющих: нерекурсивной части bn, ограниченной в работе текущими и "прошлыми" значениями входного сигнала (при реализации на ЭВМ возможно использование и “будущих” отсчетов сигнала) и рекурсивной части am, которая работает только с "прошлыми" значениями выходного сигнала.

Пример. Уравнение РЦФ: yk = boxk+a1yk-1, при bo = a1 = 0.5, y-1 = 0.

Входной сигнал: xk = {0,0,1,0,0,0,0,0,0,0,1,1,1,1,1....}

Расчет выходного сигнала:

уo = 0,5xo + 0,5y-1 = 0; y1 = 0,5x1 + 0,5yo =0; y2 = 0,5x2 + 0,5y1 = 0.5; y3 = 0,5x3 + 0,5y2 = 0.25;

y4 = 0,5x4 + 0,5y3 = 0.125; y5 = 0,5x5 + 0,5y4 = 0.0625; y6 = 0,5x6 + 0,5y5 = 0.03125; и т.д.

Выходной сигнал: yk = {0, 0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625,...}

Рис. 6.1 Рекурсивная фильтрация.

Из примера можно видеть, что реакция РЦФ на конечный входной сигнал, в принципе, может иметь бесконечную длительность (в данном случае с близкими к нулю, но не нулевыми значениями), в отличие от реакции НЦФ, которая всегда ограничена количеством членов bk (окном фильтра).

Пример. Уравнение РЦФ: yk = boxk - a1yk-1, при bo = 0.5, a1=1.1, y-1 = 0

Входной сигнал: xk = {0, 10, 0, 0, 0,....}.

Выходной сигнал: yk = {0,0,5,-5.5,6.05,-6.655,7.321,-8.053,8.858,-9.744,10.718,-11.79,… и т.д.}

Заметим: коэффициент обратной связи больше 1 и выходной сигнал идет "в разнос".

Рис. 6.2 Неустойчивый рекурсивный фильтр.

Операции, относящиеся к рекурсивной фильтрации, также известны в обычной практике, например - интегрирование. При интегрировании по формуле трапеций:

yk = (xk+xk-1)/2 + yk-1, (6.1)

т.е. здесь мы имеем РЦФ с коэффициентами: bo = b1 = 0.5, a1 = 1.

Пример. Уравнение РЦФ: yk=(xk+xk-1)/2+yk-1, начальные условия - нулевые.

Входной сигнал: xk={0,0,2,2,4,0,0,0,4,4,4,0,0,0,5,0,0,0,....}

Выполните фильтрацию.

Контроль: yk= {0,0,0,1,3,6,8,8,8,10,14,18,20,20,20,22.5,25,25,25...}