Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ЦО АВС2.doc
Скачиваний:
55
Добавлен:
07.09.2019
Размер:
8.2 Mб
Скачать

3.7.3 Методы эффективного кодирования речи

После того как аналоговый сигнал преобразован в цифровую форму, к нему можно применять различные способы обработки, которые невозможно использовать при работе с чисто аналоговым сигналом. В частности, оцифрованный сигнал перед передачей можно сжать, уменьшив таким образом пропускную способность, необходимую для передачи одного голосового соединения. Методы сжатия речи разрабатываются для достижения определенных целей — нужных скоростей битового потока, качества сигнала, задержки и сложности. Чтобы гарантировать взаимную совместимость устройств кодирования и декодирования, организации по стандартам, такие как ITU-Т, ISO и ETSI, определяют эти цели в соответствии с предназначением каждого метода. Но при этом выигрывая в одном, пользователь часто проигрывает в другом.

Во-первых, несмотря на то, что алгоритмы сжатия реализуются на аппаратном уровне, с использованием специализированных процессоров обработки цифрового сигнала (Digital Signal Processor — DSP), все-таки эта операция может привести к задержкам в передаче голоса. При разработке высококачественных методов сжатия речи для скоростей цифровых потоков ниже 10 Кбит/с возникают особенные трудности. Для простых алгоритмов задержка невелика — единицы миллисекунд, однако для сложных алгоритмов, обеспечивающих значительное сжатие, продолжительность задержки может составлять около сотни миллисекунд, что вполне ощутимо при разговоре. К счастью, недавние достижения в области обработки цифровых сигналов (digital signal processing — DSP) и сверхбольших интегральных схем (very large scale integration — VLSI) сделали реализацию таких кодирующих устройств возможной и экономически эффективной.

Вторая важная проблема состоит в том, что сжатие речи, как правило, снижает качество звука. Известно, что больших степеней сжатия цифровой информации можно достичь только при использовании алгоритмов, не допускающих полного восстановления сжимаемой информации.

Наконец, в-третьих, чем выше степень сжатия информации, тем сложнее (и соответственно дороже) оборудование требуется для осуществления этой операции. По мере усовершенствования технической базы сжатия речи это ограничение теряет свою жесткость, однако появляются все новые, более сложные алгоритмы, потребляющие большие вычислительные мощности.

3.7.4 Кодирование речи в стандарте cdma

В стандарте сотовой связи CDMA применяется метод многостанционного доступа с кодовым разделением каналов, основанный на использовании широкополосных сигналов. Каждому вызову присваивается уникальный код, позволяющий отличить этот вызов от других, передаваемых в том же частотном диапазоне. В этом стандарте обеспечивается более высокое качество речи, чем в стандарте GSM. Это во многом определяется применением кодирования речи.

В системе CDMA для преобразования аналогового речевого сигнала в цифровой используется вокодер с переменной скоростью кодирования, в основу работы которого положен алгоритм с ЛП кода - CELP. Этот алгоритм учитывает особенности человеческой речи. Вокодер перекодирует цифровой поток, имеющий скорость 64 кбит/с, в поток со скоростью 8 или 13 кбит/с. В ходе этого преобразования информационный поток делится на кадры, и содержащие паузы интервалы удаляются. Результирующий поток имеет скорость от 1 до 8 кбит/с. Вокодер приемной стороны объединяет кадры в единый поток и делает обратное преобразование. Другой важной особенностью вокодера с переменной скоростью кодирования является использование адаптивного порога для определения требуемой скорости кодирования данных. Уровень порога изменяется в соответствии с фоновым шумом. Результатом этого является подавление фона и улучшение качества речи даже в шумной обстановке. Вокодер позволяет подмешивать в речевой канал вторичный трафик, т.е. служебную информацию.