Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_2_modul.docx
Скачиваний:
28
Добавлен:
04.09.2019
Размер:
2.12 Mб
Скачать

1. Закони геометричної оптики. Використовуючи принцип Ферма доведіть закони відбивання та заломлення світла.

Геометрична оптика заснована на деяких положеннях, які спочатку були встановленні як експериментальні закони. Розглянемо ці закони:

  1. закон прямолінійного поширення світла – в однорідному прозорому середовищі світло поширюється прямолінійно;

  2. закон незалежності поширення світлових променів – світлові промені, які поширюються в просторі, під час перетину не впливають один на одного;

  3. закон оборотності світлових променів – якщо світловий промінь поширюється з точки 1 в точку 2, то в зворотному напрямі з точки 2 в точку 1 він поширюється по тому самому шляху;

  4. Мал. 3.1. Відбивання світлового променя від непрозорої поверхні

    закон відбивання світла – промінь падаючий, промінь відбитий і пер­пендикуляр, поставлений в точку падіння, лежать в одній площині; при цьому кут падіння дорівнює куту відбивання: (мал. 3.1). Кут між падаючим променем (SO) і перпендикуляром (NO) у точку падіння називають кутом падіння ( ). Кут між відбитим променем (OA) і перпендикуляром (NO) у точку падіння називають кутом відбивання (NO) називають кутом відбивання ( ).

  5. закон заломлення світла – промінь падаючий, промінь заломлений і перпендикуляр, поставлений в точку падіння, лежать в одній площині; при цьому для будь-якого кута падіння відношення синуса кута падіння до синуса кута заломлення є величина стала для двох певних середовищ і називається відносним показником заломлення (мал. 3.2):

Мал. 3.2. Відбивання та заломлення світлового променя на межі поділу двох прозорих середовищ ( )

.

Кут між заломленим променем (OB) і продовженням перпендикуляра (NO) в точку падіння називають кутом заломлення ( ).

Усі прозорі середовища характеризуються абсолютним показником заломлення. Абсолютним показником заломлення називають відношення синуса кута падіння до синуса кута заломлення, коли падаючий промінь йде із вакууму або із повітря в дане середовище. Абсолютний показник заломлення вакууму дорівнює одиниці ( ). Показник заломлення повітря вважають таким, що дорівнює одиниці, хоч його більш точне значення при нормальних умовах .

Позначимо абсолютний показник заломлення першого середовища , а другого ‑ . Тоді відносний показник заломлення дорівнює відношенню абсолютних показників заломлення: .

З теорії електромагнітного поля випливає, що абсолютний показник заломлення є числом, яке показує в скільки разів швидкість світла у вакуумі (с) більша за швидкість світла в даному середовищі (v):

.

Якщо , , то закон заломлення можна подати у вигляді:

.

Абсолютний показник заломлення залежить від частоти ( ) або від дов­жини ( ) світлової електромагнітної хвилі Для вакууму частота й довжина хвилі зв’язані між собою співвідношенням: . Різним частотам, або довжинам хвиль відповідають різні показники заломлення. Залежність показника заломлення від довжини (частоти) хвилі називають дисперсією. Розрізняють нормальну дисперсію ( < 0), коли із збільшенням довжини хвилі показник заломлення зменшується і аномальну дисперсію ( > 0), коли із збільшенням довжини хвилі показник заломлення збільшується.

Деякі задачі геометричної оптики зручно розв’язувати, користуючись принципом Ферма, який був сформульований в 1660 році французьким математиком Ферма: світло поширюється по такому шляху, на подолання якого йому необхідний мінімальний час.

Нехай світло поширюється в середовищі з показником заломлення n. Тоді швидкість світла в цьому середовищі дорівнює: v , де c швидкість світла у вакуумі. Час, протягом якого світло проходить деяку відстань S у середовищі з показником заломлення n, визначається співвідношенням:

,

Мал. 3.5. Хід світлового променя

через прозорі середовища різної оптичної густини

де S геометрична довжина шляху, оптична довжина шляху. Отже, оптичною довжиною шляху називають добуток геометричної довжини шляху на показник заломлення середовища, в якому поширюється світловий промінь.

Нехай світло проходить кілька середовищ з показниками заломлення (мал. 3.5). З точки А світло потрапляє в точку В шляхом АМNB, для подолання якого час

повинен мати найменше значення. Оскільки швидкість світла у вакуумі є величина стала, то принцип Ферма можна сформулювати так: світло поширюється по такому шляху, оптична довжина якого є мінімальною.

Виявляється, що чотири закони геометричної оптики є наслідком принципу Ферма: закон прямолінійного поширення світла оскільки мінімальний оптичний шлях між двома точками середовища являє собою пряму, то в однорідному прозорому середовищі світло поширюється прямолінійно; закон оборотності світлових променів оптичний шлях, який є мінімальним під час поширення світла з точки 1 в точку 2, буде мінімальним й під час поширення світла з точки 2 в точку 1.

Мал. 3.6. Відбивання світлового променя від непрозорої поверхні

Одержимо за допомогою принципу Ферма закон відбивання світла. Нехай світло поширюється в однорідному прозорому середовищі від точки А до точки В, відбиваючись від плоскої поверхні MN в точці О (мал. 3.6). Спочатку продовжимо пряму ОА та зафіксуємо на ній в будь-якому місці точку В'. З точки В' проводимо перпендикуляр до поверхні MN (точка С). На продовженні цього перпендикуляра треба відкласти відрізок СВ, причому СВ=СВ'. Відрізок СВ обмежується точкою В, в яку і потрапляє світловий промінь з точки А. Отже, точки В' і В є симетричними. Сполучимо точки В і О. Від точки О поставимо перпендикуляр ОК до поверхні MN. Трикутник ВОВ' є рівнобедреним, тому ОВ'= ОВ.

Визначимо на поверхні MN положення іншої точки О', яку треба з’єднати з точками А, В і В'. Трикутник ВО'В' є також рівнобедреним, тому ВО' = О'В. Тоді довжини шляхів від точки А до точки В записуються так:

АО + ОВ = АО + О'В', АО' + О'В = АО' + О'В'.

Лінія АОВ' є прямою, лінія АО'В' є ламаною при будь-якому положенні точки О'. Оскільки будь-яка ламана завжди більша за пряму між тими самими точками, то тоді маємо:

АО + ОВ < АО' + О'В.

Мал. 3.7. Хід світлового променя з менш оптично густого середовища в більш оптично густе

Отже, геометричний та оптичний шлях АОВ є найменшим. При цьому АОК ( ) = ОВ'С, тому що ОК ВВ', АВ' – січна. КОВ ( ) = ОВС, оскільки ОК СВ, ОВ – січна. Але ОВС = ОВ'С, тому що трикутник ВОВ' є рівнобедреним. Тому АОК ( ) = КОВ ( ). Таким чином, кут падіння дорівнює куту відбивання .

Одержимо за допомогою принципу Ферма закон заломлення світла. Нехай світловий промінь поширюється з менш оптично густого середовища ( ) від точки А в більш оптично густе середовище ( ) до точки В (мал. 3.7). Для будь-якого променя оптична довжина шляху дорівнює:

.

Щоб знайти мінімальне значення оптичної довжини шляху, знайдемо першу похідну від L по x та прирівняємо її до нуля:

.

Оскільки то або .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]