Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДУ-2012-Метод-пособие к СЗ.doc
Скачиваний:
6
Добавлен:
13.08.2019
Размер:
1.94 Mб
Скачать

Замечания: 1. При получении выражений (4) и (5) принципиальным было применение условия y≠0. При получении записи (5) также необходимо потребовать выполнения условия c≠0!..

2. Использование записи (5) удобнее в случае решения задачи Коши: вычисление постоянной C совсем просто, при использовании (4) пришлось бы применять логарифмы!.. Если общее решение уравнения воспринимать как совокупность кривых, то записи эквиваленты!..

Ответ: общее решение ДУ ; хотя при получении общего решения произвольная постоянная величина не должна принимать значение 0, формально из него можно получить решение исходного уравнения при значении .

Пример 631: Решить дифференциальное уравнение: . (1)

Решение:

1). Прежде всего, отметим, что исходное уравнение (1) имеет решения в виде функций: – прямые, параллельные оси , и , то есть ось .

2). Теперь воспользуемся тем, что переменные в уравнении разделяются. Так как решения и учтены, примем теперь и , и запишем уравнение в виде:

. (2)

3). Используя простейшие приёмы вычисления неопределённых интегралов, проинтегрируем уравнение (2). Получаем общее решение уравнения (2):

. (3)

Ответ: общее решение ДУ ; в данном случае решение исходного уравнения можно получать из общего при значении =0; решения также формально можно получать из общего решения.

Пример 741: Решить дифференциальное уравнение: . (1)

Решение:

1). Преобразуем заданное уравнение к виду: = . Известно, что такое уравнение легко приводится к уравнению с разделяющимися переменными!

2). Примем и вычислим производную , то есть . В нашем случае получаем , что есть уравнение с разделяющимися переменными!

3). Уравнение имеет решение в виде функции: . Учитывая обозначение , запишем решение – прямая линия.

Замечание: Увидеть решение непосредственно из исходного уравнения было бы совсем непросто!

4). Пусть теперь . Запишем уравнение в виде: , или (для удобства!) в виде: . (2)

5). Интегрирование уравнения (2) не составит труда, даже на начальном этапе освоения неопределённого интеграла . (3)

Ответ: общее решение ДУ ; в данном случае решение можно получить формально из общего при значении =0; запишем общее решение и в виде , из которого решение получается из общего при значении =0.

Пример 843: Решить дифференциальное уравнение: , . (1)

Решение:

1). Прежде всего, отметим, что исходное уравнение (1) имеет решение: – ось .

2). Переменные в уравнении разделяются. Так как решение уже учтено, примем теперь , и запишем уравнение в виде: . (2)

3). Интегрирование уравнения (2) не составит труда, даже на начальном этапе освоения неопределённого интеграла . (3)

4). Используя начальные условия , вычисляем: и получаем частное решение уравнения: – гипербола, её график включает две ветви. Начальные условия выделяют правую ветвь гиперболы!

Ответ: – частное решение ДУ: правая ветвь гиперболы.

Пример 16167: Найти уравнение кривой линии, проходящей через точку , если длина отрезка полуоси абсцисс, отсекаемого её касательной, равна квадрату абсциссы точки касания.

Решение:

В Примере 118 Главы 1 пособия получено выражения: OT= – длина отрезка полуоси абсцисс, отсекаемого её касательной; абсциссу точки касания обозначим D= .

С огласно условию задачи и в соответствии с принятыми обозначениями необходимо рассмотреть два случая:

▪ Случай-1: ; (1)

▪ Случай-2: . (2)

Случай-1.

1). Запишем дифференциальное уравнение (1) в виде: – уравнение с разделяющимися переменными, обозначим его .

2). Из записи нетрудно выделить решения: – ось , – прямая, параллельная оси и – ось . Эти решения не отражают существа поставленной геометрической задачи.

3). Пусть теперь и . Перепишем уравнение в виде = – переменные разделились. Интегрируем уравнение: = = . Используя табличные интегралы и исключая логарифмы, можем записать общее решение:

= , или = . (3)

4). Из записи общего решение дифференциального уравнения следует, что это семейство гипербол.

Для иллюстрации присвоим произвольной величине значение 1. Известно, что график функции = может быть получен, если к простейшей гиперболе применить преобразования:

 Сместить график вправо на 1, лучше сместить ось на 1 влево.

 Сместить график вверх на 1, лучше сместить ось на 1 вниз.

Учёт параметра в записи (3) может быть отмечен возможными действиями: сжатие-растяжение вдоль оси , вращение вокруг оси и движение вверх-вниз.

Так как по условию задачи кривая должна проходить через точку , то используя выражение общего решения (3), получаем значение . Именно для этого случая применён рисунок. Учитывая условие задачи, заметим, что решением является ветвь гиперболы, проходящая через точку .

Случай-2.

1). Запишем дифференциальное уравнение (2) в виде: – уравнение с разделяющимися переменными, обозначим его .

2 ). Из записи нетрудно выделить решения: – ось , – прямая, параллельная оси и – ось . Эти решения не отражают существа поставленной геометрической задачи.

3). Пусть теперь и . Перепишем уравнение в виде = – переменные разделились. Интегрируем уравнение: – = = . Используя табличные интегралы и исключая логарифмы, можем записать общее решение:

= , или = . (4)

4). Из записи общего решение дифференциального уравнения следует, что это семейство гипербол.

Для иллюстрации присвоим произвольной величине значение –3. Известно, что график функции = может быть получен, если к простейшей гиперболе применить преобразования:

 Сместить график влево на 1, лучше сместить ось на 1 вправо.

 Сместить график вниз на 3, лучше сместить ось на 3 вверх.

Учёт параметра в записи (4) может быть отмечен возможными действиями: сжатие-растяжение вдоль оси , вращение вокруг оси и движение вверх-вниз.

Так как по условию задачи кривая должна проходить через точку , то используя выражение общего решения (4), получаем значение . Именно для этого случая применён рисунок. Учитывая условие задачи, заметим, что решением является ветвь гиперболы, проходящая через точку .

Ответ: Случай-1: = – общее решение и частное: = .

Случай-2: = – общее решение и частное: = .

Вопросы для самопроверки:

  1. Какое уравнение называют дифференциальным?

  2. Как определить порядок ДУ?

  3. Что значит - решить дифференциальное уравнение?

  4. Что такое решение ДУ, частное решение ДУ?

  5. Что такое общее решение ДУ?

  6. Что значит решить Задачу Коши?

  7. Что такое семейство кривых?

  8. Как построить уравнение, решением которого является заданное семейство кривых?

  9. Каковы стандартные формы ДУ с разделяющимися переменными и их решение?

Задачи для самоподготовки:

Пример C11: В заданном семействе: выделить уравнение кривой, удовлетворяющей приведенному начальному условию: .

Ответ: .

Пример C12: Решить дифференциальное уравнение: .

Ответ: y2 +x2 = C.

Пример C13: Решить дифференциальное уравнение: y = 1+ y2.

Ответ: , также .

Пример C14: Решить дифференциальное уравнение: y = ex+y.

Ответ: ex +ey = C.

Пример C15: Решить дифференциальное уравнение: .

Ответ: .

Пример C16: Найти уравнение кривой, проходящей через точку (1,2), если её подкасательная вдвое больше абсциссы точки касания.

Ответ: и .

< * * * * * >