Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НК.DOC
Скачиваний:
1
Добавлен:
12.08.2019
Размер:
406.53 Кб
Скачать

Биосинтез днк.

Генетическая информация, заключенная в ДНК хромосомы может быть передана либо путем точной репликации, либо с помощью рекомбинации, транспозиции и конверсии:

1) Рекомбинация две гомологические хромосомы обмениваются генетическим материалом.

2) Транспозиция – способность перемещения генов по хромосоме или между хромосомами. Возможно, это играет важную роль в клеточной дифференцировке.

3) Конверсия - одинаковые последовательности хромосом могут формировать случайные пары, а несовпадающие участки удаляются.

4) Репликация (это основной вид синтеза ДНК), то есть воспроизведение «себе подобных».

Главное функциональное значение репликации – снабжение потомства генетической информацией. Основной фермент, катализирующий синтез ДНК – это ДНК-полимераза. Выделено несколько видов ДНК-полимеразы: 1) альфа – (выделена из ядра) – это основной фермент, связанный с репликацией хромосом. 2) бета – (так же локализована в ядре) – по-видимому, участвуют в репарации и процессах рекомбинации. 3) гамма – (локализованы в митохондриях) – вероятно, участвует в репликации митохондриальных ДНК. Для работы ДНК-полимеразы необходимы следующие условия: 1) в среде должны присутствовать все 4 дезоксирибонуклеотида (дАТФ, дГТФ, дЦТФ и ТТФ); 2) для оптимальной активности необходим ко-фактор: ионы марганца; 3) необходимо присутствие копируемой двухцепочечной ДНК; 4) нуклеотиды присоединяются в направлении 5` - 3` (5` - 3` - полимеризация); 5) репликация начинается в строго определенном участке и идет одновременно в обоих направлениях с примерно одинаковой скорость; 6) для начала синтеза может использоваться как затравочная порция либо фрагмент ДНК, либо фрагмент РНК, в отличие от синтеза РНК, где возможен синтез из отдельных нуклеотидов; 7) для репликации необходима суперспирализованная молекула ДНК. Но, если, как мы говорили выше, для транскрипции (то есть для синтеза РНК) необходимы РНК-полимераза (с гамма-субъединицей для узнавания и связывания с промотором) и белок узнования сигнала терминации (фактор ), при репликации ДНК действие ДНК полимеразы дополняют несколько (около 10) белков, часть которых представляют собой ферменты. Эти дополнительные белки способствуют:

1)узнавания точки начала репликации ДНК-полимеразой.

2) Локальному расплетанию дуплекса ДНК, что освобождает одиночные цепи для копирования матрицы.

3) Стабилизации расплавленной структуры (расплетенной).

4) Образование затравочных цепей для инициации действия ДНК-полимеразы.

  1. Участвует в формировании и продвижении репликационной вилки.

  2. Способствует узнаванию участков терминации.

  3. Способствует суперспирализации ДНК.

Мы оговорили все необходимые условия репликации ДНК. И так, как уже упоминалось, репликация ДНК начинается в строго определенном месте. Для расплетания родительской ДНК требуется энергия, высвобождающаяся при гидролизе АТФ. На разделение каждой пары АО затрачивается две молекулы АТФ. Синтез новой ДНК сопряжен с одновременным раскручиванием родительской ДНК. Участок, где происходит одновременно расплетание и синтез, называется «репликационной вилкой»:

Р одительская ДНК

Вновь синтезируемые ДНК

Репликация ДНК происходит таким образом, что каждая цепь родительской 2-цепочечной ДНК является матрицей для синтеза новой комплиментарной цепи и две цепи (исходная и вновь синтезируемая), соединяясь образуют следующие поколения ДНК. Этот механизм называют полуконсервативная репликация. Репликация ДНК проходит одновременно на 2 цепях, и идет, как уже упоминалось в направлении 5` - 3`. Но ведь цепи родительской ДНК разнонаправлены. Однако, фермента, ведущего синтез ДНК в направлении 3` - 5` нет. Поэтому, одна цепь, копирующая материнскую с направленностью 5` - 3`, будет синтезироваться непрерывно (ее называют «лидирующая»), вторая цепь будет синтезироваться тоже в направлении 5` - 3`, но фрагментами по 150 – 200 нуклеотидов, которые впоследствии сшиваются. Эту цепь называют «отстающая».

Для того, чтобы начался синтез новой ДНК необходима затравка. Мы уже говорили, что затравкой может быть фрагмент ДНК или РНК. Если затравкой служит РНК, то это очень короткая цепь, она содержит около 10 нуклеотидов и называется праймером. Синтезирует праймер, комплементарный одной из цепей ДНК, особый фермент – праймаза. Сигналом для активации праймазы служит образование предзатравочного промежуточного комплекса, состоящего из 5 белков. 3`-концевая группа (гидроксильная группа концевого рибонуклеотида праймера) и служит затравкой для синтеза ДНК под действием ДНК-полимеразы. После синтеза ДНК, РНК-компанент (праймер) гидролизуется под действием ДНК-полимеразы.

Работа ДНК-полимераз направляется матрицей, то есть нуклеотидный состав новосинтезированной ДНК зависит от характера матрицы . В свою очередь, ДНК-полимераза всегда удаляет некомплементарные остатки на конце затравки, прежде чем продолжать полимеризацию. Таким образом, репликация ДНК идет с большой точностью, так как спаривание оснований проверяется дважды. ДНК-полимеразы способны наращивать цепи вновь синтезируемых ДНК, но не способны катализировать соединение 2 цепей ДНК или замыкать одну цепь (при образовании кольцевой ДНК). Эти функции выполняет ДНК-лигаза, который катализирует образование фосфодиэфирной связи между 2 цепями ДНК. Фермент этот активен при наличии свободной – ОН-группы на 3` конце одной цепи ДНК и фосфатной группы на 5` конце другой цепи ДНК. Сшивание цепей происходит за счет энергии АТФ. Поскольку множество химических и физических агентов (ионизирующая радиация, УФЛ, различные химические вещества) вызывают в ДНК повреждение (изменяются или теряются АО, разрываются фосфодиэфирные связи и.д.), во всех клетках имеются механизмы для исправления этих повреждений. ДНК-рестриктаза находит эти повреждения и вырезает поврежденный участок, ДНК-полимераза проводит репарационный (восстановительный) синтез поврежденных участков в направлении 5` - 3`. Восстановленный участок сшивается с остатком цепи ДНК-лигазой. Этот метод исправления измененных или поврежденных участков называется репарацией. Список ингибиторов репликации ДНК многообразен и велик. Одни связываются с ДНК полимеразой, инактивируя ее, другие связываются и инактивируют определенный вспомогательный блок, третьи внедряются в матричную ДНК, нарушая ее спосоьность к копированию, четвертые выступают в роли конкурентных ингибиторов, представляя собой аналог нормальных нуклеотидтрифосфатов. Такими ингибиторами являются некоторые антибиотики, мутагены, химические яды, антивирусные агенты и т.д.

Биосинтез белка (трансляция генов).

Сборка полипептидной цепи из составляющих ее АК представляет собой удивительный и очень сложный процесс, который можно представить происходящим в 4 стадии, а именно:

1) активация и отбор АК (АТФ-зависимая стадия);

2) инициация синтеза полипептидной цепи (ГТФ-зависимая стадия);

3) элонгация полипептидной цепи (ГТФ-зависимая стадия);

4) терминация синтеза полипептидной цепи.

(1)– активация и отбор АК. Во всех типах клеток первой стадией трансляции является АТФ-зависимое превращение каждой АК в комплекс: аминоацил-тРНК. Этим достигается две цели:

1) повышается реакционная способность АК в плане образования пептидной связи.

2) АК соединяется со специфической тРНК (то есть происходит отбор). Реакция идет в 2 стадии + Mg++

1 ) АК + АТФ аминоацил – АМФ + ПФ

аминоацил-тРНК-синтетаза

- АМФ

2 ) аминоацил-АМФ + тРНК аминоацил-тРНК

аминоацил-тРНК-синтетаза

Аминоацил-тРНК-синтетаза катализирует присоединение аминоацила (аминокислотного остатка) к 3` гидроксильной группе концевого аденозина. Вспомним строение тРНК:

А АК

э то плечо необходимо это плечо участвует в связывании аминоацил-

д ля узнования тРНК тРНК с рибосомой в месте синтеза белка.

а миноацил-тРНК-

п етидазой

антикодон

Помимо каталитической активности, аминоацил-тРНК-синтетаза обладает очень высокой специфичностью, «узнавая» как аминокислоты, так и соответствующие им тРНК. Предполагается, что клетки содержат 20 синтетаз – по одной на каждую АК, в то время тРНК гораздо больше (не менее 31 -32), так как многие АК могут соединятся с двумя и даже с тремя различными молекулами тРНК.

(2)Инициация – вторая стадия синтеза белков.

Для начала трансляции необходимо точное узнавание первого кодона, расположенного сразу же за не транслируемой последовательностью мРНК. Инициаторным кодоном является АУГ, а инициатором выступает метионин-тРНК

м РНК не транслируемая транслируемая не транслируемая

последовательность последовательность последовательность

1-ый кодон.

Узнавание идет с помощью антикодона тРНК. Считывание происходит в направлении 5` - 3`. Это узнавание требует упорядоченного, идущего с затратой энергии ( ГТФ) взаимодействия с диссоциированными рибосомами. Этот процесс происходит с участием дополнительных белков, которые называют факторы инициации (ФИ), их 8. В процессе участвуют 40S и 60S субъединиц рибосом. Рассмотрим подробный механизм инициации.

1) 40S – субъединица рРНК связывается с областью мРНК, предшествующей первому кодону. В этом принимает участие ФИ-3.

2) Первая аминоацил-тРНК, участвующая в трансляции первого кодона, взаимодействует с ГМФ и ФИ-2. Этот образовавшийся комплекс в присутствии ФИ-1 присоединяет тРНК к первому кодону матрицы и образует инициаторный комплекс с 40S субъединицей рибосомы.

3) После высвобождения всех факторов инициации (ФИ-1,2,3) к ГТФ присоединяется 60S субъединица рибосомы, при этом происходит гидролиз ГТФ. Так завершается образование полной 80S-частицы рибосомы. таким образом образуется полный инициаторный комплекс: рибосома – мРНК – тРНК.

Полностью собранная рибосома содержит 2 функциональных участка для взаимодействия с молекулами тРНК. Пептидильный участок (Р-участок) – содержит растущую полипептидную цепь в составе пептидил-тРНК в комплексе с последним протранслированным кодоном мРНК. Аминоацильный участок (А-участок) содержит аминоацил-тРНК, соединенную с соответствующим кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным для следующей Аминоацил-тРНК.

Схематично весь этот процесс мы можем представить так:

1)40S-субъединица рибосомы при участии ФИ-3 присоединяется к нетранслирующей последовательности мРНК непосредственно перед первым кодоном.

2)аминоацил-тРНК, соединяется с ГТФ и ФИ-2 и при участии ФИ-1 присоединяеся к первому кодону, при этом образует с 40S-субъединицей инициаторный комплекс.

3)происходит освобождение ФИ-1,2,3.

4) 60S-субъединица взаимодействует с ГТФ и затем присоединяется к инициаторному комплексу. Образуется полная 80S-рибосома, имеющая Р-участок и А-участок.

5)после образования инициаторного комплекса с первым кодоном, аминоацил-тРНК попадает в формирующийся Р-участок, оставляя А-участок свободным.

(3)Элонгация – продолжение синтеза. На этом этапе происходит удлинение пептидной цепи. В полностью сформированной на стадии инициации 80S-рибосома, А-участок свободен. По сути, в процессе элонгации постоянно повторяется цикл из 3 стадий:

1) Правильное расположение следующей аминоацил-тРНК.

2) образование пептидной связи.

3) перемещение новообразованной пептидил-тРНК из А-участка в Р-участок.

(1)– присоединение соответствующей (следующей) аминоацил-тРНК в А-участке требует точного узнавания кодона. Это происходит с помощью антикодона тРНК. Присоединение аминоацил-тРНК к рибосоме происходит благодаря образованию комплекса, состоящего из аминоацил-тРНК, ГТФ и белковых факторов элонгации (ФЭ), их тоже несколько. При этом высвобождается комплекс ФЭ – ГДФ и фосфат. Этот комплекс (ФЭ – ГДФ) затем (при участии ГТФ и других белковых факторов) вновь превращается в ФЭ – ГТФ.

(2) - альфа аминогруппа новой аминоацил-тРНК в участке А осуществляет нуклеофильную атаку эстерефицированной карбоксильной группы пептидил – тРНК, занимающей Р-участк. Эта реакция катализируется пептидилтрансферазой – белковым компонентом, входящим в состав 60S-субъединицы рибосомы. поскольку АК а аминоацил-тРНК уже активирована, для этой реакции (реакции образования пептидной связи) дополнительной энергии не требуется. В результате реакции растущая полипептидная цепь оказывается прикрепленной к тРНК, находящейся в А-участке.

(3) – после удаления пептдильного остатка с тРНК в Р-участки, свободная молекула РНК покидает Р-участок. Комплекс ФЭ-2 – ГТФ участвует в перемещении новообразованной пептидил-тРНК из А-участка в Р-участок, освобождая А-участок для нового цикла элонгации. Совокупность отделения деацилированной тРНК, передвижение новообразованной пептидил-тРНК из А-участка в Р-участок, а так же передвижение мРНК относительно рибосомы, называется транслокацией. Поскольку на образование аминоацил-тРНК затрачивалась энергия, получаемая при гидролизе АТФ до АМФ, а это эквивалентно энергии гидролиза 2АТФ до 2 АДФ; на присоединения аминоацил-тРНК к А-участку требовалась энергия, получаемая при гидролизе ГТФ до ГДФ, и еще одна молекула ГТФ затрачивалась на транслокацию. Мы можем подсчитать, что на образование одной пептидной связи нужна энергия, получаемая при гидролизе 2 молекул АТФ и 2 молекул ГТФ.

Скорость наращивания полипептидной цепи (то есть скорость элонгации) in vivo оценивается в 10 аминокислотных остатков в секунду. Эти процессы ингибируются разными антибиотиками. Так, пуромицин блокирует транслокацию, соединяясь с

Р-участком. Стрептомицин, связываясь с рибосомными белками, нарушает узнавание кодона антикодоном. Хлоромицитин связывается с А-участком, блокируя элонгацию. Схематично это можно представить так: 1) следующая аминоацил-тРНК благодаря узнаванию с помощью антикодона закрепляется в А-участке. Присоединение происходит в комплексе с ГТФ и ФЭ-1. при этом высвобождается ГДФ – ФЭ – 1 и Фк, который затем снова превращается в ГТФ – ФЭ-1 и принимает участие в новых циклах. 2) Происходит образование пептидой связи между присоединившейся аминоацил-тРНК и пептидом, находящемся в Р-участке. 3) При образовании этой пептидной связи от пептида отделяется тРНК и покидает Р-участок. 4) Новообразованный пептидил-тРНК с помощью комплекса ГТФ – ФЭ2 перемещается из А в Р-участок, а комплекс ГТФ – ФЭ2 гидролизуется до ГДФ – ФЭ-2 и Фк. 5) В результате этого перемещения А-участок освобождается для присоединения новой аминоацил-тРНК.

(4)-Терминация – заключительный этап синтеза белка. После многих циклов элонгации, в результате которых синтезируется полипептидная цепь белка, в

А-участке появляется терминирующий или нонсенс-кодон. В норме отсутствуют тРНК, способные узнать нонсенс-кодон. Их распознают специфические белки – факторы терминации (R-факторы). Они специфически узнают нонсенс-кодон, связываются с рибосомой вблизи А-участка, блокируя присоединение следующей аминоацил-тРНК. R-факторы при участии ГТФ и пептидилтрансферазы обеспечивают гидролиз связи между полипептидом и молекулой тРНК, занимающей Р-участок. После гидролиза и высвобождения полипептида и тРНК, 80S-рибосома диссоциирует на 40S и 60S субъединицы, которые затем могут вновь использоваться в трансляции новых мРНК.

Мы рассмотрели рост одной единственной цепи белка на одной рибосоме, присоединенной к одной молекуле мРНК. В действительности процесс протекает более эффективно, так как мРНК обычно транслируется одновременно не на одной рибосме, а на рибосомных комплексах (полисомах) и каждая стадия трансляции (инициация, элонгация, терминация) осуществляется при этом каждой рибосомой в этой полисоме, в этом рибосомальном комплексе, то есть появляется возможность синтеза нескольких копий полипептида, прежде чем мРНК будет расщеплена.

Размеры полисомных комплексов сильно варьируют и обычно определются размерами молекулы мРНК. Очень большие молекулы мРНК способны образовывать комплексы с 50 – 100 рибосомами. Чаще, однако,комплекс содержит от 3 до 20 рибосом.

В клетках животных и человека многие белки синтезируются по мРНК в виде молекул-предшественников, которые затем для образования активных молекул должны быть модифицированы, по аналогии с синтезом НК. В зависимости от белка могут происходить одна или большее число следующих модификаций.

1) Образование дисульфидной связи.

2) Присоединение ко-фактров и ко-ферментов.

3) Присоединение простетических групп.

4) Частичный протеолиз (проинсулин - инсулин).

5) Образование олигомеров.

6) Химическая модификация (ацилирование, аминирование, метилирование, фосфорилирование, карбоксилирование и т.д. ) – известно более 150 химических модификаций АК в составе молекулы белка.

Все перечисленные модификации приводят к изменению структуры и активности белков.