Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия экз.doc
Скачиваний:
48
Добавлен:
04.08.2019
Размер:
374.78 Кб
Скачать
  1. Окисленность элементов. Окислительно-востановительные реакции.

Неравномерность распределения эл-нов между атомами в соединениях получила название окисленности. Элемент, электроны которого смещаются к атомам другого элемента, проявляют положительную окисленность, а элемент, к атомам которого смещаются электроны другого элемента, проявляют отрицательную окисленность. Число электронов, смещенных от одного атома данного элемента при положительной окисленности или к одному атому данного элемента при отриц.окисленности назыв. степенью окисления (окисленности) элемента, обозначается арабскими цифрами (+1,+2).

ОВР – р-ции, протекающие с изменением СО атомов, входящих в состав реагирующих в-в.

  1. Составление уравнений окислительно-востановительных реакций.

Существуют два метода составления ОВР - метод электронного баланса и метод полуреакций. Здесь мы рассмотрим метод электронного баланса. В этом методе сравнивают степени окисления атомов в исходных веществах и в продуктах реакции, приэтом руководствуемся правилом: число электронов, отданных восстановителем, должно равняться числу электронов, присоединённых окислителем.

Нужно расставить коэффициенты в реакции, схема которой: HCl + MnO2  Cl2 + MnCl2 + H2O

Алгоритм расстановки коэффициентов:

1.Указываем степени окисления химических элементов. Подчёркнуты химические элементы, в которых изменились степени окисления.

2.Составляем электронные уравнения, в которых указываем число отданных и принятых электронов.

За вертикальной чертой ставим число электронов, перешедших при окислительном и восстановительном процессах. Находим наименьшее общее кратное (взято в красный кружок). Делим это число на число перемещённых электронов и получаем коэффициенты (взяты в синий кружок). Значит перед марганцем будет стоять коэффициент-1, который мы не пишем, и перед Cl2 тоже -1.

Перед HCl коэффициент 2 не ставим, а считаем число атомов хлора в продуктах реакции. Оно равно - 4.Следовательно и перед HCl ставим - 4,уравниваем число атомов водорода и кислорода справа, поставив перед H2O коэффициент - 2. В результате получится химическое уравнение:

  1. Электрохимические процессы. Гальванический элемент Якоби-Даниэля.

Электрохи́мия — раздел химической науки, в котором рассматриваются системы и межфазные границы при протекании через них электрического тока, исследуются процессы в проводниках, на электродах и в электролитах.

Процессы взаимного превращения химической и электрической форм энергии называют электрохимическими процессами. Электрохимические процессы можно разделить на две основные группы:

1) процессы превращения химической энергии в электрическую (в гальванических элементах);

2) процессы превращения электрической энергии в химическую (электролиз).

Элемент Якоби-Даниэля состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой, изготовленной из пористого материала.

При работе элемента, т.е. при замкнутой цепи, цинк окисляется: на поверхности его соприкосновения с раствором атомы цинка превращаются в ионы и, гидратируясь, переходят в раствор. Высвобождающиеся при этом электроны движутся по внешней цепи к медному электроду. Вся совокупность этих процессов схематически изображается уравнением полуреакции, или электрохимическим уравнением: Zn = Zn2+ + 2e- . На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из раствора дегидратирующимися ионами меди; образуются атомы меди, выделяющиеся в виде металла. Соответствующее электрохимическое уравнение имеет вид: Cu2+ + 2e- = Cu. Суммарное уравнение реакции, протекающей в элементе, получится при сложении уравнений обеих полуреакций. Таким образом, при работе гальванического элемента, электроны от восстановителя переходят к окислителю по внешней цепи, на электродах идут электрохимические процессы, в растворе наблюдается направленное движение ионов. Электрод, на котором протекает окисление, называется анодом(цинк). Электрод, на котором протекает восстановление, называется катодом (медь). В принципе электрическую энергию может дать любая ОВР. Однако, число реакций, практически используемых в химических источниках электрической энергии, невелико. Это связано с тем, что не всякая окислительно-восстановительная реакция позволяет создать гальванический элемент, обладающий технически ценными свойствами. Кроме того, многие окислительно-восстановительные реакции требуют расхода дорогостоящих веществ.В отличие от медно-цинкового элемента, во всех современных гальванических элементах и аккумуляторах используют не два, а один электролит; такие источники тока значительно удобнее в эксплуатации.