Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оргазм_шпоры.docx
Скачиваний:
22
Добавлен:
07.07.2019
Размер:
1.08 Mб
Скачать
  1. Методы преобразования виртуального адреса в физический при странично-сегментном распределении памяти с использованием tlb

Процесс преобразования адресов посредством таблиц является достаточно длительным и, естественно, приводит к снижению производительности системы. С целью ускорения этого процесса используется специальная полностью ассоциативная кэш-память (рис. 4.17), которая называется буфером преобразования адресов TLB  (translation lookaside buffer).

В иртуальный адрес страницы VAi, составленный из полей g и p, передается в TLB в качестве поискового признака (тега). Он сравнивается с тегами (VA) всех ячеек TLB, и при совпадении из найденной ячейки выбирается  физический адрес страницы n, позволяющий сформировать  полный физический адрес элемента данных, находящегося в ОП. Если совпадение не произошло, то трансляция адресов осуществляется обычными методами через таблицы сегментов и страниц. Эффективность преобразования адресов с использованием TLB зависит от коэффициента «попадания» в кэш-памяти, т. е. от того, насколько редко приходится обращаться к табличным методам трансляции адресов. Учитывая принцип локальности программ и данных, можно сказать, что при первом обращении к странице, расположенной в ОП, физический адрес определяется с помощью таблиц и загружается в соответствующую ячейку TLB. Последующие обращения к странице выполняются с использованием TLB.

 

Рис. 4.17. Механизм преобразования адресов с использованием TLB

 

  1. Методы замещения строк в кэш-памяти

Способ определения строки, удаляемой из кэш-памяти, называется стратегией замещения. Для замещения строк кэш-памяти существует несколько методов: метод замещения наиболее давнего по использованию объекта — строки, метод LRU (замещение наименее используемой информации); метод FIFO (первым пришёл — первым вышел) и метод произвольного замещения. В первом случае среди строк, являющихся объектами замещения, выбирается строка, к которой наиболее длительное время не было обращений. По методу FIFO среди всех строк, являющихся объектами замещения, выбирается та, которая самой первой была переслана в кэш-память. И наконец, по последнему методу строка выбирается произвольно. Реализация этих методов упрощается в указанной последовательности, но наибольшим эффектом обладает метод замещения наиболее давнего по использованию объекта (строки).

Для реализации этого метода необходимо манипулировать строками, которые являются объектами замещения, с помощью LRU-стека. При каждой загрузке в этот стек помещается строка, в результате чего при замене используется строка, хранящаяся в наиболее глубокой позиции стека, и эта строка удаляется из стека. При доступе к строке, которая уже содержится в LRU-стеке, эта строка удаляется из стека и заново загружается в него. Стек типа LRU устроен таким образом, что, чем дольше к строке не было доступа, тем в более глубокой позиции она располагается. Реализация стека типа LRU, позволяющего с высокой скоростью выполнять такую операцию, усложняется по мере увеличения числа строк.

По методу частично ассоциативного распределения число строк в каждом стеке LRU равно числу строк в одной группе, и так как это число мало (порядка 2 – 4), то для каждой группы необходимо использовать свой стек. Если число групп сравнительно велико, то оснащение каждой из них стековым механизмом приводит к повышению стоимости.