Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оргазм_шпоры.docx
Скачиваний:
22
Добавлен:
07.07.2019
Размер:
1.08 Mб
Скачать
  1. Методы повышения пропускной способности оперативной памяти (организация памяти на ddr sdram)

Кардинальным способом увеличения пропускной способности ОП стал переход к стандарту DDR. Динамическая память DDR SDRAM пришла на смену синхронной SDRAM и обеспечила в два раза большую пропускную способность. Аббревиатура DDR (Double Data Rate) означает удвоенную скорость передачи данных. Как уже отмечалось выше, основным сдерживающим элементом увеличения тактовой частоты работы памяти является ядро памяти (массив элементов хранения – Memory Cell Array). Однако, кроме ядра в модуле памяти присутствуют и буферы промежуточного хранения (буферы ввода-вывода – I/O Buffers), через которые ядро памяти обменивается данными с шиной памяти. Эти буферы могут иметь значительно более высокое быстродействие, чем само ядро, поэтому тактовую частоту работы шины памяти и буферов обмена можно легко увеличить. Именно такой способ и используется в DDR-памяти.

Рассмотрим предельно упрощенную схему функционирования памяти типа SDRAM (см. рис. 4.8, а). Ядро SDRAM-памяти и буферы ввода-вывода работают в синхронном режиме на одной и той же частоте. Передача каждого бита из буфера на шину происходит с каждым тактом работы ядра памяти.

При переходе от SDRAM к DDR (см. рис.4.8, б) технология одинарной скорости передачи данных заменяется на удвоенную за счет того, что передача данных от микросхем памяти модуля к контроллеру памяти по внешней шине данных осуществляется по обоим полупериодам синхросигнала (восходящему – «фронту», и нисходящему – «срезу»). В этом и заключается суть технологии «Double Data Rate – DDR», именно поэтому «эффективная» частота памяти DDR-400 составляет 400 МГц, тогда как ее истинная частота, или частота буферов ввода-вывода, составляет 200 МГц. Т.о., каждый буфер ввода-вывода передает на шину два бита информации за один такт, оставаясь при этом полностью синхронизированным с ядром памяти. Однако, чтобы такой режим работы стал возможным, необходимо, чтобы эти два бита были доступны буферу ввода-вывода на каждом такте работы памяти. Для этого требуется, чтобы каждая команда чтения приводила к передаче из ядра памяти в буфер сразу двух бит по двум независимым линиям передачи внутренней шины данных. Из буфера ввода-вывода биты данных затем поступают на внешнюю шину в требуемом порядке. Такая схема передачи данных с рассмотренным преобразованием типа «2–1» называется схемой «2n-предвыборки» (2n-prefetch).

Наиболее естественным путем решения проблемы достижения более высоких тактовых частот при переходе от DDR к DDR2 явилось снижение тактовой частоты внутренней шины данных вдвое по отно-шению к реальной тактовой частоте внешней шины данных (частоте буферов ввода-вывода). Так, в рассматриваемом примере микросхем памяти DDR2-800 (см. рис. 4.8, в) частота буферов составляет 400 МГц, а «эффективная» частота внешней шины данных – 800 МГц (поскольку сущность технологии Double Data Rate остается в силе). При этом частота внутренней шины данных (ядра памяти) составляет всего 200 МГц, поэтому для передачи 1 бита (по каждой линии данных) за такт внешней шины с «эффективной» частотой 800 МГц на каждом такте внутренней шины данных требуется передача уже 4 бит данных. Такая схема передачи данных с рассмотренным преобразованием типа «4–1» называется схемой «4n-предвыборки» (4n-prefetch).

Очередной «эволюционный скачок» в технологии реализации памяти DDR SDRAM это переход от стандарта DDR2 к новому стандарту DDR3.

Рис. 4.8. Схематическое представление передачи данных в микросхеме памяти для:  а – SDRAM-200; б – DDR-400; в – DDR2-800; г – DDR3-1600

DDR3 –это всё та же удвоенная частота внешней шины данных по отношению к частоте внутренней шины, это удвоенная частота буферов ввода-вывода по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600, DDR3-1866. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому для достижения темпа передачи данных со скоростью 1 бит/такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц (как в примере, рассмотренном на рис. 4.8, г) используемые микросхемы (с частотой 200 Мгц) должны передавать по 8 бит данных за каждый «свой» такт. Такая схема передачи данных с рассмотренным преобразованием типа «8–1» называется схемой «8n-предвыборки» (8n-prefetch).