Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Blok_1_obshie_voprosy.doc
Скачиваний:
28
Добавлен:
04.05.2019
Размер:
3.5 Mб
Скачать

56. Кластерный анализ как метод многомерной классификации

Кластерный анализ наиболее ярко отражает черты многомерного анализа в классификации, факторный анализ – в исследовании связи.

Большое достоинство кластерного анализа в том, что он позволяет производить разбиение объектов не по одному параметру, а по целому набору признаков. Кроме того, кластерный анализ в отличие от большинства математико-статистических методов не накладывает никаких ограничений на вид рассматриваемых объектов, и позволяет рассматривать множество исходных данных практически произвольной природы.

Кластерный анализ позволяет рассматривать достаточно большой объем информации и резко сокращать, сжимать большие массивы социально-экономической информации, делать их  компактными и наглядными.

Как и любой другой метод, кластерный анализ имеет определенные недостатки  и ограничения: В частности, состав  и количество кластеров зависит от  выбираемых критериев разбиения. При сведении исходного массива данных к более компактному виду могут возникать определенные искажения, а также могут теряться индивидуальные черты отдельных объектов за счет  замены их характеристиками обобщенных значений параметров кластера. При проведении классификации объектов игнорируется очень часто возможность отсутствия в рассматриваемой  совокупности каких-либо значений кластеров.

Задача кластерного анализа заключается в том, чтобы на основании данных, содержащихся во множестве Х, разбить множество объектов G на m (m – целое) кластеров (подмножеств) Q1, Q2, …, Qm, так, чтобы каждый объект Gj принадлежал одному и только одному подмножеству разбиения и чтобы объекты, принадлежащие одному и тому же кластеру, были сходными, в то время, как объекты, принадлежащие разным кластерам были разнородными.

содержание

57. Проверка значимости уравнения множественной регрессии и его коэффициентов. Интервальное оценивание коэффициентов уравнения регрессии

Интервальное оценивание коэффициентов уравнения регрессии

Регрессионный анализ – это статистический метод исследования зависимости случайной величины Y от переменных Xj (j = 1, 2, ..., k), рассматриваемых в регрессионном анализе как неслучайные величины независимо от истинного закона распределения Xj.

Наиболее часто используемая множественная линейная модель регрессионного анализа имеет вид:

y = β0 1хi1 +...+βjxij+...+βkxiki (2.1)

где εi – случайные ошибки наблюдения, независимые между собой, имеют нулевую среднюю и дисперсию σ2

В матричной форме регрессионная модель имеет вид:

Y = Xβ + ε (2.2)

Значимость уравнения регрессии, т. е. гипотеза H0: β=0 (β01=...=βk=0), проверяется по F-критерию, наблюдаемое значение которого определяется по формуле:

,

где QR=(Xb)T(Xb), Qост=(Y-Xb)T(Y-Xb)=Σ(yii)2.

По таблице F-распределения для заданных α, ν1=κ+1, ν2=n−κ−1 находят Fкр.

Для проверки значимости отдельных коэффициентов регрессии, т. е. гипотез H0: βj=0, где j=1,2,...k, используют t-критерий и вычисляют: . По таблице t-распределения для заданного α и ν= n–k–1, находят tкр.

Гипотеза H0 отвергается с вероятностью α, если tнабл>tкр. Из этого следует, что соответствующий коэффициент регрессии βj значим, т. е. βj ≠0. В противном случае коэффициент регрессии незначим и соответствующая переменная в модель не включается. Тогда реализуется алгоритм пошагового регрессионного анализа, состоящий в том, что исключается одна из незначимых переменных, которой соответствует минимальное по абсолютной величине значение tнабл . После этого вновь проводят регрессионный анализ с числом факторов, уменьшенным на единицу. Алгоритм заканчивается получением уравнения регрессии со значимым коэффициентами.

Наряду с точечными оценками bj генеральных коэффициентов регрессии βj, регрессионный анализ позволяет получать и интервальные оценки последних с доверительной вероятностью γ.

Интервальная оценка с доверительной вероятностью γ для параметра βj имеет вид: ,

где tα находят по таблице t-распределения при вероятности α =1−γ и числе степеней свободы ν=n−κ−1 .

содержание

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]