Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Final.doc
Скачиваний:
3
Добавлен:
17.04.2019
Размер:
2.13 Mб
Скачать

39.Осн теоремы о пределах. Замечат пределы.

1-й замечат предел, или тригонометрич предел.

Теорема:

Док-во:

;

Очевидно:

sinx<=x<=tgx

Т.к.

; ;

Следствия из теоремы:

1. 2.

Второй замечательный предел:

е-число Эйлера,

Если

40.Непрерывность функции в точке. Точки разрыва и их классификация.

Пусть у=f(x) задана в некотором множестве х, тогда функция называется непрерывной в точке , если , x x

т. е. функция f(x) называется непрерывной в точке , если она определена в этой точке, односторонние пределы существуют, являются конечными цифрами между собой и равны значению функции в этой точке.

Если у=f(x) непрерИвна в каждой точке множества х, то она непрерИвна на этом множестве.

Точки разрыва и их классификация.

Если условие непрерИвности(*) не выполняется, то - точка разрыва.

Точки разрыва делятся на точки разрыва 1-ого рода, 2-ого рода и устранимые точки разрыва.

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой.

Точка разрыва является точкой разрыва 2-ого рода, если хотя бы один из односторонних пределов не существует или равен бесконечности.

Точка разрыва называется устранимой, если оба односторонних предела существуют, являются конечными числами, равными между собой, но не равны значению функции в этой точке.

42.Св-ва ф-ций, непрерывных на отрезке

1)Первая теорема Вейерштрасса

Если ф-ция f(x) непрерывна на отрезке [а, b], то она ограничена на этом отрезке.

Теорема неверна, если в ней отрезок заменить интервалом (а,b) или полуинтервалом[a,b) либо (a,b]

2) Вторая теорема Вейерштрасса

Если ф-ция f(x)прерывна на отрезке [a, b], то она достигает на этом отрезке своего наименьшего значения m и наиб. Значения М, т.е. сущ-ют точки , [a, b], такие, что f( )=m, f(

Теорема утверж-т, что знач-я непрерыв.на отрезке [а, b] ф-ции заключены между ее наибольшими и наимен. знач-ями, т.е. mf(x) ≤M x

3) Теорема Больцано-Коши о промежут.Значении

Если ф-ция f(x) непрерывна на отрезке [a, bf(a)=A, f(b)=B (AB), то каково бы ни было число С, заключенное между А и В, найдется точка z [a, b], такая, что f(z)=C.

Cледствие. Если ф-ция f(x) непрерывна на отрезке [a, b] и на его концах принимает знач-я разных знаков, то на этом отрезке сущ-ет хотя бы одна точка , в кот. ф-ция обращается в нуль, т.е.f( )=0

Алгебраич.сумма любого конечного числа непрерыв. на некот. отрезке ф-ций непрерывна на этом отрезке.

43.Произв. Ф-ции. Геометр., механ., экон. Смысл произ-ной. Эласт-сть ф-ции, ее экон приложение.

Пусть ф-ция y=f(x) определена на некот множ-тве Х, тогда произв. ф-цией y=f(x) назыв. предел отношения приращения ф-ции к приращению независ. переменной, если этот предел сущ-ет когда приращ-е аргумента стремится к нулю. Если ввести обозначения: то выраж-е можно записать в виде:

Обозначается произ-я у’, f’(x), ,

C геометр. точки зр. значения производной ф-ции, вычисленное в некот. точке численно равно угловому коофициенту касательной, проведенной к графику ф-ции у=f(x) в точке с абсциссой ,

т.е. f’(

f’(

Пусть задана ф-ция S=S(t), кот. опред-ет зависимость пути от времени,в механике S’(t)=Vмгнов.скорость в момент времени t.

Пусть задана ф-ция у=f(x), для которой сущ-ет производная у’=f’(x). Эластич-тью ф-ции у=f(x) относ-но переменной х назыв-ся предел:

Его обознач-т

Эластич-ть относ-но х есть приближен.процентн прирост ф-ции (повышение/пониж-е) при приращении независ переменной на 1%.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]