Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ3.doc
Скачиваний:
4
Добавлен:
17.04.2019
Размер:
964.61 Кб
Скачать

Тема №33 иерархия объектов микромира

Микромир - специфическая область объективной реальности (атомы, ядра, элементарные частицы и др.), в которой размеры объектов меньше миллиардных долей сантиметра, а временные промежутки порядка миллиардных долей секунды, т. е. непосредственно недоступные наблюдению.

Как показывает само название, объекты, относимые к микромиру, были выделены по признаку их малых размеров. Если принять за критерий границу видимости невооруженным глазом, равную 70—80 мкм, то все объекты, которые лежат за пределами этой границы, можно отнести к микромиру. Диапазон размеров микроорганизмов велик. Величина самых крупных представителей микромира, лежащих на границе видимости невооруженным глазом, приблизительно 100 мкм .

1 миллиметр (мм) = 103 микрометров (мкм) = 106 нанометров (нм) ) = 107 ангстрем (A) = 1011 пикометров (пм).

ТЕМА №34

ПЕРВЫЕ МОДЕЛИ АТОМА

СТРОЕНИЕ АТОМА ПО ТЕОРИИ НИЛЬСА БОРА

Модель атома Томсона

модель «Пудинг с изюмом»

Джозеф Джон Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Эта модель не объясняла дискретный характер излучения атома и его устойчивость. Была окончательно опровергнута Резерфордом .

Ранняя планетарная модель атома Нагаоки

В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбиталям вращались электроны, объединённые в кольца. Модель оказалось ошибочной.

Планетарная модель атома Бора-Резерфорда

В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а следовательно, терять энергию. Расчеты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Современное представление об атоме

Сегодня общепринятой является модель атома, являющаяся развитием планетарной модели. Считается, что ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами.

ТЕМА №35

ДВОЙСТВЕННАЯ ПРИРОДА МИКРОЧАСТИЦ

ПРИНЦИП НЕОПРЕДЕЛЁННОСТИ ВЕРНЕРА ГЕЙЗЕНБЕРГА

ВЕРОЯТНОСТНЫЙ МЕТОД ОПИСАНИЯ

ПОВЕДЕНИЯ МИКРОЧАСТИЦ ЭРВИНА ШРЕДИНГЕРА

Корпускулярно-волновой дуализм (идея де Бройля о двойственной природе микрочастиц) — это теория о том, что свет представляется на микроуровне одновременно и как мельчайшие частицы (корпускулы), и как волны.

В частности, свет — это и корпускулы (фотоны), и электромагнитные волны. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Корпускулярные свойства света проявляются при фотоэффекте Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны, или вообще могут считаться точечными.

Принцип неопределённости Гейзенбе́рга — в квантовой механике так называют принцип, дающий нижний (ненулевой) предел для произведения дисперсий величин, характеризующих состояние системы.

Принцип неопределённости в квантовой механике иногда объясняется таким образом, что измерение координаты обязательно влияет на импульс частицы.

Отношения неопределённости Гейзенберга — это теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями фон Неймана. Они тем более справедливы для неидеальных измерений или измерений Ландау.

Соответственно, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица в коробке с определённым значением энергии; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни каким-либо определённым значением импульса (включая его направление).