Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эл.Элт ЧII.doc
Скачиваний:
77
Добавлен:
17.04.2019
Размер:
29.97 Mб
Скачать
    1. Управляемые выпрямители

Вентильный блок управляемых выпрямителей включает в свой состав тиристоры. Известно, что для включения тиристора необходимо подать на его анод положительное напряжение (положительную полуволну напряжения сети), а на управляющий электрод – сигнал управления iу. Если сигнал управления совпадает с моментом перехода через нуль выпрямляемого напряжения (моментом естественного отпирания диода в неуправляемом выпрямителе), то среднее значение выпрямленного напряжения будет таким же, как и на выходе неуправляемого выпрямителя.

Если сигнал управления задержать относительно момента естественного отпирания, то тиристор откроется позже, напряжение на выходе выпрямителя уменьшится. В этом заключается суть управления. Количественно задержка управляющего сигнала относительно момента естественного отпирания оценивается углом сдвига по фазе α. Этот угол называется углом управления.

Схема управляемого нулевого выпрямителя приведена на рис. 27.7, а. На рис. 27 7, б приведены графики напряжений на входе и выходе выпрямителя, а также график тока сигнала управления при α = 30°.

На графиках моменты θ1, θ2 и θ3 соответствуют точкам естественного отпирания вентилей. Если бы управляющий сигнал был подан на управляющие электроды тиристоров в эти моменты времени, то среднее значение выпрямленного напряжения выпрямителя определилось бы выражением (27.14). При задержке управляющего сигнала по фазе на угол α среднее значение выпрямленного напряжения уменьшится и будет определяться выражением

. (27.15)

Из (27.15) очевидно, что, изменяя угол управления α, можно изменять среднее значение выпрямленного напряжения на выходе выпрямителя. При α > 30° в кривой URн(t) появятся отрицательные участки, а при α = π U0вып = 0.

3. Сглаживающие фильтры

Анализ работы рассмотренных схем выпрямителей показал, что напряжение на их выходе не постоянное, а пульсирующее. Применять такое напряжение непосредственно для питания электронных устройств нельзя. Существенно снизить уровень пульсаций позволяют сглаживающие фильтры. В основу их построения положено применение реактивных элементов – индуктивностей и емкостей.

Пульсирующее напряжение на выходе выпрямителей всегда описывается периодической функцией. Разложение такой функции в ряд Фурье содержит постоянную составляющую (среднее значение выпрямленного напряжения) и совокупность гармоник. Идеальный сглаживающий фильтр должен беспрепятственно пропускать в нагрузку постоянную составляющую и не пропускать гармоники пульсаций. Для решения этой задачи и используются свойства реактивных элементов.

Известно, что сопротивление индуктивности пропорционально частоте. Это значит, что для постоянной составляющей сопротивление идеальной индуктивности равно нулю, а для гармоник оно тем больше, чем выше номер гармоники. Поэтому индуктивность полезно включать последовательно нагрузке (рис. 27.8, а).

Сопротивление емкости обратно пропорционально частоте. Для постоянной составляющей это сопротивление бесконечно велико, а для гармоник мало, и тем меньше, чем выше номер гармоники. Поэтому емкость полезно включать параллельно нагрузке (рис. 27.8, б). Для повышения качества фильтрации применяются комбинированные LC фильтры, например, как на рис. 27.8, в.

Количественной оценкой качества сглаживающих фильтров является коэффициент сглаживания S, определяемый отношением коэффициентов пульсации на входе и выходе фильтра:

, (27.16)

где Um.п.н – амплитудное значение первой гармоники пульсаций в нагрузке (на выходе фильтра), U0.н – среднее напряжение в нагрузке.

Рассмотрим принцип работы простейшего емкостного фильтра, сглаживающего пульсации однополупериодного выпрямителя (рис. 27.9, а).

Собственно выпрямитель (диод D и сопротивление RH) формирует пульсации напряжения с периодом Тп и амплитудным значением Um (пунктир на рис. 27.9, б). При включении емкостного фильтра форма выходного напряжения изменяется (сплошная линия на графике рис. 27.9, б). Рассмотрим процесс формирования напряжения на выходе фильтра подробнее.

Сопротивление емкости переменному току значительно меньше сопротивления нагрузки , потому прямой ток диода на интервале пульсации протекает через конденсатор Сф, заряжая его до напряжения, близкого к Um. При уменьшении напряжения пульсации диод закрывается. Его сопротивление становится значительно больше RH. Поэтому емкость Сф начинает разряжаться через RH, а напряжение на ее обкладках уменьшается по экспоненциальному закону:

,

где - постоянная фильтра.

В конце периода пульсаций, когда t =Tп, напряжение на выходе фильтра станет равным

.

Разность UmuCфп) = 2·∆U определяет амплитудное значение пульсаций на выходе фильтра, причем,

.

Очевидно, что, чем больше ф, тем меньше амплитуда пульсаций 2·∆U. Реальные фильтры имеют . При малом значении показателя экспоненты разность

,

поэтому

.

Среднее значение напряжения на выходе фильтра (на нагрузке) определим как разность т.е.

. (27.17)

Таким образом, рис. 27.9, б и полученные выражения показывают, что величина пульсаций на выходе фильтра уменьшилась до значения 2U. Частота пульсаций осталась прежней . Поэтому огибающая выходного напряжения теперь совпадает максимумами с первой гармоникой пульсаций в нагрузке. Значит, , а коэффициент пульсаций на выходе фильтра определится выражением:

. (27.18)

Коэффициент сглаживания определим, учитывая, что Кп.вх = π / 2. Тогда

. (27.19)

Легко видеть, что подбором Сф и Rн можно обеспечить требуемое значение коэффициента пульсаций, а значит, и необходимое качество выпрямленного напряжения.

В силу простоты схемы и достаточно высокой эффективности емкостные сглаживающие фильтры нашли широкое применение в маломощных выпрямителях. В мощных выпрямителях сопротивление Rн мало, поэтому максимальная величина τф ограничена предельным значением емкости выпускаемых конденсаторов.

При малом значении Rн более эффективны L или LC фильтры. Коэффициент сглаживания L – фильтра определяется выражением

,

а LC – фильтра

.