Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эл.Элт ЧII.doc
Скачиваний:
77
Добавлен:
17.04.2019
Размер:
29.97 Mб
Скачать

2. Электропроводность полупроводников

Мы выяснили, что у металлов запрещенная зона практически отсутствует, а у диэлектриков она очень большая. Существует ряд веществ, атомы которых имеют относительно небольшую ширину запрещенной зоны, существенно больше, чем у проводников, но меньше, чем у диэлектриков. Например, при температуре 300 К у кремния ширина запрещенной зоны э = 1,12 эВ; у германия э = 0,66 эВ. Такие вещества называют полупроводниками. Рассмотрим их свойства.

Германий и кремний имеют по четыре валентных электрона. Схема их идеальной кристаллической решетки приведена на рис. 18.2, а. При температуре абсолютного нуля по Кельвину все электроны полностью заполняют нижнюю разрешенную зону. Эта зона называется валентной. Ближняя разрешенная зона свободна, но отделена запрещенной зоной (рис. 18.2, б).

В слабом электрическом поле или при незначительном (несколько градусов) нагреве кристалла электроны получают дополнительную энергию, но ее недостаточно для преодоления запрещенной зоны. В валентной зоне свободных уровней нет. Поэтому, несмотря на полученное ускорение, электроны (носители заряда) остаются без движения. Кристалл ведет себя как диэлектрик.

С повышением температуры нагрева до определенной величины (Т ≈ 300 К) некоторые электроны получают энергию, достаточную для преодоления запрещенной зоны и перехода в свободную зону (рис. 18. 2, б). Такие электроны назвали электронами проводимости, а зону, в которую они перешли, зоной проводимости. Освободившийся энергетический уровень в валентной зоне называют дыркой. Переход электрона в зону проводимости означает разрыв одной из валентных связей в кристаллической решетке рис. 18.2, а. В зоне проводимости электрон может свободно перемещаться по кристаллу.

Число электронов проводимости зависит от температуры кристалла и определяется выражением

, (18.1)

где n0 – концентрация атомов вещества (см-3), ∆ – ширина запрещенной зоны (эВ).

Пример. Пусть n0 = 1022 см-3, ∆ = 1,0 эВ, Т = 275 К. Подставляя эти значения в (18.1) и учитывая, что эВ = 1,6∙10-19, получим n = 4896. Если температуру повысить до 300 К, то n = 164300.

Приведенный пример показывает, что концентрация электронов зависит от температуры. Число носителей зарядов относительно мало. Это отличает полупроводники от металлов. Другое отличие заключается в том, что, наряду с электронами проводимости, в кристалле появляется еще один тип носителей заряда – дырки. Очевидно, что число дырок p равно числу электронов проводимости n, поэтому принято говорить о паре носителей. Процесс образования в чистом полупроводнике пар электрон-дырка называют генерацией собственных носителей зарядов. Генерация носителей заряда происходит непрерывно.

Одновременно с генерацией в полупроводнике непрерывно происходит и обратный процесс – рекомбинация носителей заряда, т. е. возвращение электронов из зоны проводимости в валентную зону. При этом пара носителей заряда исчезает. Среднее время между моментами генерации и рекомбинации называется временем жизни носителя заряда τр.

Механизмы рекомбинации могут быть различны. Различают межзонную, излучательную, безызлучательную рекомбинации и рекомбинацию с участием рекомбинационных ловушек. Наиболее интенсивно происходит рекомбинация последнего типа. Роль рекомбинационных ловушек могут выполнять атомы или ионы примеси, различные включения в кристалле, незаполненные узлы кристаллической решетки, трещины и другие несовершенства объема или поверхности. Дефекты кристаллической решетки называют центрами рекомбинации.

В состоянии термодинамического равновесия процессы генерации и рекомбинации носителей заряда взаимно уравновешены. При этом в полупроводнике существуют равновесные концентрации электронов п и дырок р, причем,

, (18.2)

где А – константа, Т – температура по Кельвину, ∆ – ширина запрещенной зоны, к = 1,38 10-23 – постоянная Больцмана.

Электрическая проводимость полупроводников, обусловленная собственными носителями зарядов, называется собственной, а ее удельная величина определяется выражением

, (18.3)

где g = 1,6 10-19 Kзаряд электрона, n и pподвижность носителей.