Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Num_methods.doc
Скачиваний:
27
Добавлен:
01.12.2018
Размер:
1.02 Mб
Скачать

Сравнение различных методов.

Сравнение методов обычно производится по следующим критериям:

1.Универсальность.

2.Простота организации вычислений и контроля за точностью.

3.Скорость сходимости.

Если сравнить три приведенных выше метода, то следует отметить, что

1) Самым универсальным является метод половинного деления, поскольку он применим для любой непрерывной функции. Однако и в двух других методах ограничения не слишком жесткие и, обычно, на практике можно применять любой метод.

2) Все три метода примерно одинаковы и очень просты.

3) Скорость сходимости в методе половинного деления -геометрическая прогрессия со знаменателем 1/2 , в методе итерации -со знаменателем q, а метод Ньютона, как правило, дает сходимость со скоростью, превышающей скорость сходимости любой геометрической прогрессии. Во всех случаях скорость сходимости очень высока.

Контрольные вопросы

3.Каковы условия применимости методов Ньютона и итераций?

4.В чем суть методов половинного деления, Ньютона и итераций?

5. Из какого конца следует проводить касательную в методе Ньютона?

6.Какие существуют способы приведения уравнения к виду, пригодному для применения метода итераций?

7.Какой метод приближенного решения уравнений отличается от двух других в смысле слежения за точностью решения?

8.Какой метод обычно дает самую быструю сходимость?

9.Какой метод выгоднее применять - метод половинного деления или метод итераций, если максимум модуля производной функции u(x) на отрезке [a,b] равен 0.7? А если 0.4?

Содержание лабораторной работы

Предварительная работа.

1. Локализовать графически большие корни уравнений ех- х - i - 1 = 0 и ln x - x + i + 1 = 0, где i - номер студента по списку в группе.

2. Привести оба уравнения на этих отрезках к виду, пригодному для применения метода итераций.

3. Составить программы всех трех методов с подсчетом числа шагов, требуемых для решения уравнения с заданной точностью .

Работа в лаборатории.

1. Ответить на вопросы контролирующей программы.

2. Ввести и отладить домашние программы. Протестировать на контрольных примерах.

3. Исполнить программы для обоих своих уравнений каждым из трех методов.

ОТЧЕТ должен содержать:

1. Название, цель работы.

2.Локализацию корней своих уравнений графическим способом и приведение их к виду, пригодному для метода итераций.

3. Текст программы для каждого из трех методов.

4. Ответы и количество шагов в каждом из методов для получения точности =1е-8.

Интерполирование функций

При решении большинства вычислительных задач приходиться иметь дело с функциями, заданными таблично, а не аналитически. В этом случае дополнительные вопросы возникают даже тогда, когда надо определить значение функции в определенной точке. Как правило, эта задача носит вспомогательный характер, но сейчас мы ее рассмотрим как самостоятельную.

Постановка задачи интерполирования.

На отрезке (a, b) в n+1 точке (узлах интерполяции) a=X0 < X1 < X2 <...< Xn=b

заданы значения Yi функцииY=f(X). Требуется подобрать вспомогательную функцию (x) (интерполяционную функцию или интерполянту) простого вида, для которой:

  1. (Xi)=Yi при i=0,1,2,3,...,n

  2. (X)f(X) при всех остальных значениях X[a,b].

Основной целью процесса интерполирования является получение быстрого и экономичного алгоритма вычисления приближенного значения функции во всех точках отрезка [a,b].

Формулировка задачи не является строго математической, поскольку в нее входят, например, слова "функция простого вида", или (X)f(X). Главные вопросы здесь -как выбрать интерполянту и как оценить точность приближения функции f(X) на отрезке [a,b].

Ответ на вопрос о точности, без каких-либо дополнительных ограничений на функцию f(X), дать нельзя, поскольку легко привести примеры совершенно непохожих друг на друга непрерывных функций, которые задаются таблично одинаковым способом. Поэтому при оценке точности налагаются ограничения на гладкость функции, что мы и увидим позже.

Рассмотрение вопроса о виде интерполирующей функции (X) привело к созданию целой теории приближений, весьма сложной и большой по объему. Поэтому мы ограничимся рассмотрением лишь простейших случаев: линейной интерполяции и интерполяции многочленами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]