Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ермол_7.doc
Скачиваний:
16
Добавлен:
10.11.2018
Размер:
1.05 Mб
Скачать

6. Определение коллекторских свойств пласта по данным исследования скважин при упругом режиме.

Методы исследования пластов и скважин, основанные на изучении неустановившихся процессов изменения забойного давления в возмущающих и реагирующих скважинах, тесно связаны с теорией упругого режима. После пуска или остановки скважины на ее забое и в окружающих реагирующих скважинах возникают (в условиях упругого режима) длительные процессы перераспределения давления. При помощи самопишущих скважинных манометров можно записать повышение или понижение давления и построить график изменения забойного давления, с течением времени – кривую восстановления давления (КВД).

Чаще всего при гидродинамическом исследовании скважины наблюдают (измеряют) восстановление забойного давления после остановки скважины, ранее продолжительное время работавшей с постоянным дебитом Q.

Очевидно, что коллекторские свойства пласта влияют на форму графиков восстановления забойного давления , поэтому по форме КВД можно определить коллекторские свойства пласта – его проницаемость и пьезопроводность.

Для упрощения обработки КВД прибегают к преобразованию графиков восстановления давления, изменяя их криволинейную форму в прямолинейную.

Наиболее распространенный метод определения коллекторских свойств пласта по данным о восстановлении забойного давления в остановленных скважинах – метод построения преобразованного графика восстановления забойного давления в полулогарифмических координатах ( lg t), имеющего форму прямой. Прямолинейную зависимость  от lg t установить несложно.

На основании основной формулы теории упругого режима (7.37) можно получить следующую зависимость между изменением забойного давления С и временем t с момента пуска скважины в эксплуатацию с постоянным дебитом Q.

Последнее выражение можно представить в виде

, (7.43)

или

, (7.44)

где

(7.45)

Как видно из формул (7.43) и (7.44) изменение (снижение) забойного давления в пущенной с постоянным дебитом Q скважине оказывается линейной функцией логарифма времени. Следовательно, эти формулы можно рассматривать как уравнение графика изменения забойного давления после пуска скважины в эксплуатацию.

Рассмотрим теперь кривую восстановления забойного давления, т.е. рост забойного давления после мгновенной остановки скважины. Будем считать, что до остановки скважина длительное время работала с постоянным дебитом Q и вокруг нее в пласте имело место установившееся распределение пластового давления в соответствии с формулой (3.25)

,

т.е. пьезометрическая линия является кривой логарифмического типа.

Изменение забойного давления после мгновенной остановки скважины можно определить, используя принцип суперпозиции:

, (7.46)

где С. уст – депрессия на пласт при установившейся работе добывающей скважины с дебитом Q:

; (7.47)

С. неуст – изменение давления на забое воображаемой нагнетательной скважины, пущенной в момент t=0 с расходом Q:

. (7.48)

Так как уст величина постоянная (от времени не зависит), то изменение забойного давления С будет определяться по формуле (7.48), которая совпадает с формулами (7.43) и (7.44).

Обработка кривых восстановления забойного давления и определения по ним коллекторских свойств пласта проводятся следующим образом. Снятую скважинным манометром кривую восстановления забойного давления после остановки скважины перестраивают в координатах (С, lg t). По прямому участку этой кривой (рис.50) находится отрезок, отсекаемый ее продолжением на оси С (отрезок А), и тангенс угла наклона этой прямой к оси абсцисс (B=tg ). Затем с помощью второго равенства (7.45) определяется параметр , называемый гидропроводностью пласта, т.е.

. (7.49)

Если известны вязкость жидкости в пластовых условиях  и толщина пласта h, то из последней формулы находится коэффициент проницаемости пласта

. (7.50)

Далее по известному угловому коэффициенту B=tg и радиусу скважины из первого равенства (7.45)

можно определить коэффициент пьезопроводности пласта

. (7.51)

Отметим, что область применения указанных простых приемов интерпретации результатов исследования нефтяных скважин ограничивается условиями, при которых справедлива формула (7.37), а именно:

скважина рассматривается как источник постоянной интенсивности в бесконечном однородном пласте, и возможна мгновенная остановка притока флюида в скважину.

График, построенный по результатам реальных промысловых исследований скважин, принимает форму прямой не сразу. На форму начальных участков графиков прослеживания забойного давления влияет изменение проницаемости в призабойной зоне пласта. В зарубежной литературе это влияние именуется «скин-эффектом» (skin – пленка, оболочка).

Рис. 50

В случае ограниченного пласта, когда изменение давления, вызванное закрытием скважины, доходит до его границы, КВД в скважине начнет искажаться, а через достаточно большое время выходит на горизонтальную асимптоту, соответствующую стационарному распределению давления. Поэтому длина прямолинейного участка на кривой ограничена (рис.50). Кроме того в реальных условиях скважину нельзя остановить мгновенно. После ее закрытия на устье приток флюида из пласта продолжается еще некоторое время из-за упругости жидкости и газов, заполняющих скважину. Время выхода на асимптоту, должно очевидно превышать время дополнительного притока. Поэтому возможны условия, при которых прямолинейный участок на КВД проявляется через значительный промежуток времени, либо даже вообще не существует.

Поскольку длительная остановка скважины нежелательна, были развиты методы определения параметров пласта на неустановившихся режимах, лишенных указанных недостатков и учитывающие, в частности, время работы скважины до ее остановки (метод Хорнера), а также приток флюида в скважину после ее остановки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]