Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции_All_New_КабелиСвязи.doc
Скачиваний:
160
Добавлен:
08.11.2018
Размер:
3.56 Mб
Скачать

4.3.5 Дисперсия.

Дисперсия определяет полосу частот, пропускаемую световодом и соответственно объем информации, который можно передавать по оптическим кабелям. В идеализированном варианте по световоду возможна организация огромного числа каналов на большие расстояния, а фактически имеются значительные ограничения. Это обусловлено тем, что сигнал на входе приемного устройства приходит размытым и искаженным, и чем длинней линия, тем больше искажается передаваемый сигнал. Данное явление носит название дисперсии, и обусловлено оно различным временем распространения различных мод в световоде и наличием частотной зависимости показателя преломления.

Рис. 9. Уширение импульсов за счёт дисперсии

Дисперсия – это рассеяние во времени спектральных или модовых составляющих оптического сигнала, приводящее к увеличению длительности импульса на приеме. Величина уширения определяется как квадратичная разность длительности импульсов на выходе и входе кабеля, по формуле: .

Причем значения tВЫХ и tВХ берутся на уровне половины амплитуды импульсов.

Связь между дисперсией и полосой частот, передаваемых по волоконному световоду, приближенно выражается соотношением:F = 1/. Так, если = 20нс/км, то F = 50 МГцкм.

Дисперсия не только ограничивает частотный диапазон использования световодов. Она существенно снижает дальность передачи по оптическому кабелю, так как чем длиннее линия, тем больше проявляется дисперсия и больше уширение импульса.

Пропускная способность оптического кабеля существенно зависит от типа и свойств волоконных световодов (одномодовые, многомодовые, градиентные), а также от типа излучателя (лазера, световода).

Дисперсия складывается из трех составляющих:

  1. межмодовый мод;

  2. материальной мат;

  3. волноводной вв.

Результирующее значение уширения импульсов определяется:

.

Модовая дисперсия обусловлена наличием большого числа мод, время распространения которых различно.

Материальная и волноводная дисперсии обусловлены некогерентностью источников излучения и появление спектра ( – ширина спектральной линии источника излучения). Ширина спектральной лини лазера составляет 1–3 нм, светоизлучающего диода – 20–40 нм. Волноводная дисперсии характеризуется зависимостью коэффициент распространения моды от длины волны (). Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны (). При этом скорость распространения волны зависит от коэффициента распространения и от показателя преломления.

В ступенчатых волноводах при многомодовом режиме передачи доминирует модовая дисперсия, достигающая больших значений (20–250 нс/км), из-за разного времени прохождения лучей. В геометрической интерпретации соответствующие модам лучи идут под различными углами (рис. 1 а), проходят различный путь в сердцевине волокна и, следовательно, поступают на вход с различной задержкой.

В одномодовых ступенчатых световодах модовая дисперсия отсутствует. Здесь проявляется волноводная и материальная дисперсии, но они почти равны по абсолютной величине и противоположны по фазе в достаточно широком спектральном диапазоне. В силу этого происходит их взаимная компенсация и результирующая дисперсия при  = 1,2…1,7 мкм не больше 1 нс/км.

В градиентных световодах происходит выравнивание времени распространения различных мод. В таких световодах лучи распространяются по волнообразным траекториям (см. рис. 1 б). Причем лучи, находящиеся близко от оси световода, проходят меньший путь, но в области с большим показателем преломления, а периферийные лучи имеют большой путь, но в среде с меньшим показателем преломления. В результате скорость распространения различных лучей выравнивается и они приходят к концу линии практически в одинаковое время (). Вследствие этого искажения передаваемого сигнала в градиентных световодах меньше, чем в ступенчатых. По абсолютной величине дисперсия в градиентных световодах колеблется в пределах 3...5 нс/км.

Сравнивая дисперсионные характеристики световодов, можно отметить, что лучшими данными обладают одномодовые световоды. Хорошие данные также у градиентных световодов с плавным изменением показателя преломления. Наиболее резко дисперсия проявляется у ступенчатых многомодовых световодов.

Частотная полоса пропускания существующих конструкций оптических кабелей колеблется в широких пределах и составляет от 30 до 1000 МГцкм. Она неодинакова для различных типов световодов. Для градиентных световодов с лазерным источником света частотная полоса составляет 100...250 МГцкм. В многомодовых световодах она сужается до 50 МГцкм. Наивысшей пропускной способностью обладают одномодовые световоды. У них полоса пропускания достигает 0,5...1 ГГцкм.

Явление дисперсии приводит как к ограничению пропускной способности (F) оптических кабелей, так и к снижению дальности передачи по ним. Эти параметры - полоса частот F и дальность передачи l взаимосвязаны. Соотношение между ними для коротких линий выражается формулой:

где значения с индексом х - искомые, без индекса - заданные.

Соответственно: и .

В длинных линиях (примерно свыше 8 км), в которых процесс распространения волны уже установился, действует квадратичный закон соотношения между l и F,

т.е. тогда: .

Так, если для оптического кабеля со строительной длиной и полосой пропускания , то на участке линии длиной , полоса пропускания существенно сузится и составит .

Д

лина регенерационного участка выбирается по наименьшему значению l или lF, т. е. таким образом, чтобы не превышать допустимые значения по затуханию тракта (адоп = l) и пропускной способности (Fдоп).