Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiziologia_vozbudimykh_tkaney_itog_teoria.docx
Скачиваний:
1180
Добавлен:
18.03.2016
Размер:
71.53 Кб
Скачать

21) Основные отличия в строении и функционировании скелетной и гладкой мышц.

Гладкие мышцы характеризуются двумя особенностями. Во-первых, в отличие от скелетных мышц и миокарда они не имеют поперечной исчерченности (отсюда их название). Во-вторых, гладкие мышцы получают иннервацию не от соматического, а от вегетативного отдела нервной системы , поэтому лишены прямой произвольной регуляции. Гладкие мышцы пластичны, т.е. способны сохранять приданную растяжением длину без изменения напряжения. Скелетная мышца, наоборот, обладает малой пластичностью. Гладкомышечные волокна - веретенообразные клетки без поперечной исчерченности с одним ядром, способные к делению. Они содержат актиновые и миозиновые филаменты и сокращаются посредством механизма скользящих нитей. Скелетные мышцы в отличие от гладких способны совершать произвольные быстрые сокращения и производить этим значительную работу. Рабочим элементом мышцы является мышечное волокно. Мышечные волокна обладают тремя основными свойствами: возбудимостью — способностью отвечать на действия раздражителя генерацией потенциала действия; проводимостью — способностью проводить волну возбуждения вдоль всего волокна в обе стороны от точки раздражения; сократимостью — способностью сокращаться или изменять напряжение при возбуждении.

22) Законы действия постоянного тока на ткани ( Пфлюгер)

Впервые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом, т.е. катодом возбудимость повышается, а под положительным – анодом снижается. Это называется законом действия постоянного тока. Изменение возбудимости ткани (например, нерва) под действием постоянного тока в области анода или катода называется физиологическим электротоном.

В настоящее время установлено, что под действием отрицательного электрода – катода потенциал мембраны клеток снижается. Это явление называется физическим катэлектротоном. Под положительным – анодом, он возрастает. Возникает физический анэлектртон. Так как, под катодом мембранный потенциал приближается к критическому уровню деполяризации, возбудимость клеток и тканей повышается. Под анодом мембранный потенциал возрастает и удаляется от критического уровня деполяризации, поэтому возбудимость клетки, ткани падает. Следует отметить, что при очень кратковременном действии постоянного тока (1 мс и менее) МП не успевает измениться, поэтому не изменяется и возбудимость ткани под электродами.

Постоянный ток широко используется в клинике для лечения и диагностики. Например, с помощью него производится электростимуляция нервов и мышц, физиопроцедуры: ионофорез и гальванизация.

23) Катодическая депрессия Вериго

  Русский ученый Вериго показал, что при длительном действии постоянного тока на ткань, или при действии сильных раздражителей эти электротонические изменения возбудимости извращаются - под катодом начальное повышение возбудимости сменяется ее понижением (развивается т.н. катодическая депрессия), а под анодом сниженная возбудимость постепенно возрастает. Причина этих изменений возбудимости на полюсах постоянного тока связана с тем, что величина Ек меняется при длительном действии раздражителя. Под катодом (и при возбуждении) Ек постепенно удаляется от МП, снижается, так что наступает момент, когда разница Е0-Ек становиться больше исходной. Это приводит к падению возбудимости ткани. Напротив, под анодом Ек имеет тенденцию к возрастанию, постепенно приближаясь к Ео. Возбудимость при этом растет, так как уменьшается исходная разница между Ео и Ек.

Причиной изменения критического уровня деполяризации под катодом является инактивация натриевой проницаемости, обусловленная длительной деполяризацией мембраны. Вместе с этим значительно повышается проницаемость для К. Все это приводит к тому, что мембрана клетки утрачивает способность отвечать на действие раздражающих стимулов. Такие же изменения мембраны лежат и в основе рассмотренного уже явления аккомодации. Под анодом же при действии тока явления инактивации снижаются .