Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1. матан.docx
Скачиваний:
199
Добавлен:
08.03.2016
Размер:
2.94 Mб
Скачать

Математикалық талдау

Бірінші және екінші текті қисық сызықты интегралдар. 14

Бірінші және екінші текті меншіксіз интегралдар. Меншіксіз интегралдардың жинақтылығының жеткілікті шарттары. 7

Дәрежелік қатарлар және олардың жинақталу облысы.Дәрежелік қатарлар мүшелеп интегралдау және мушелеп диффференциалдау. Функцияларды дәрежелік қатарларға жіктеу. 12

Дифференциалданатын функциялардың негізгі қасиеттері. Бір айнымалы функция үшін Тейлор формуласы. 5

Көп айнымалыдан тәуелді функция. Көп айнымалыдан тәуелді функцияның шегі. Көп айнымалыдан тәуелді функция үшін Тейлор формуласы. 8

Көп айнымалыдан тәуелді функцияның локалды экстремумы. Локалды экстремумның қажетті және жеткілікті шарттары. Шартты экстремум. 9

Қос интегралдаудың негізгі қасиеттері. Қос интегралдауда және үш еселі интегралдауда айнымалыны ауыстыру. 13

Сандық қатарлар. Абсолют және шартты жинақты қатарлар. Қатар жинақтылығының жеткілікті шарттары. 10

Тізбектер және оның шегі. Жинақты тізбектер және олардың қасиеттері.Тізбек жинақтылығының Коши критериі. 1

Үзіліссіз функциялар. Кесіндідегі үзіліссіз функциялардың қасиеті. 3

Функционалдық тізбектер және қатарлар. Функционалдық тізбектер мен қатарлар бірқалыпты жинақтылығының жеткілікті белгілері. 11

Функция шегі.Функция шегінің бар болуының Коши критериі 2

Функцияның интегралдануының қажетті және жеткілікті шарттары. Анықталған интегралдың орта мәні туралы теоремалар. 6

Функцияның үзіліс нүктелері және олардың классификациясы. 4

1.Тізбектер және оның шегі. Жинақты тізбектер және олардың қасиеттері.Тізбек жинақтылығының Коши критериі.

Натурал сандар жиынында анықталған функциясының мәндерін сан тізбегі немесе тізбек деп атайды.

Егер тізбегі берілсе, оны символымен белгілейді немесе былай жазады:

Мысалы, тізбектің шегін табу керек.

Шешімі. болады.

Анықтама. Шегі бар тізбекті жинақты деп, шегі жоқ тізбекті жинақсыз деп атайды. Егер тізбектің шегі бар болса, онда тізбек шектелген болады. Жинақты тізбектің бір ғана шегі бар. Жоғары (төменгі) жағынан шектелген өспелі (кемімелі) тізбектің шегі бар.

Теорема 4. Егер және тізбектері жинақты болса, онда

1) ;

2) ;

3) ;

4) .

Егер , онда

Коши критерийі

Хn  тізбегі    R жиынында жинақты болу үшін Хn тізбегінің фундаментальді болуы қажетті және жеткілікті

Қажеттілік  айталық   хnтізбегі жинақты және оның шегі  а болсын  сонда мұның фундаментальді екенін көрсетейік

∃ nbϵ  N    =>| xn-a| =

Демек n+p>na

Ушин де  фундаментальді    

Хn функционалды  тізбек

2.Функция шегі.Функция шегінің бар болуының Коши критериі.

Кванторлар тілінде бұл теорема былай жазылады:

f- тің а нүктесінде нақты ()()()

мәнді шегі бар

:ε. (1)

(1)- нің оң жағында жазылған шарт Коши шарты деп аталады.

Сонымен Коши критерийін былай айтуға болады: функциясының а нүктесінде нақты мәнді шегі бар болуы үшін сол нүктеде Коши шарты орындалуы қажетті және жеткілікті.

3. Үзіліссіз функциялар. Кесіндідегі үзіліссіз функциялардың қасиеті.

Үзіліссіз функциялардың қасиеттері.

4.Функцияның үзіліс нүктелері және олардың классификациясы.

5. Дифференциалданатын функциялардың негізгі қасиеттері. Бір айнымалы функция үшін Тейлор формуласы.

6. Функцияның интегралдануының қажетті және жеткілікті шарттары. Анықталған интегралдың орта мәні туралы теоремалар.

Анықталған интегралдың анықтамасы. сегментінде анықталған функциясы берілсін. Осы сегментті қалауымызша алынған нүктелерімен бөлікке бөліп, әр бөлік сегменттен кез келген нүктесін алып, Риман қосындысы немесе интегралдық қосынды деп аталатын мынадай қосынды жасайық:.

Бұл қосындының мәні, жалпы алғанда, сегментін бөлу тәсілінен де, нүктелеріне де тәуелді. Бөлік сегменттердің ұзындықтарының ең үлкенін , яғни деп белгілейік.

Анықтама. Егер интегралдық қосынды -ның нөлге ұмтылғанда (барлық бөлік сегменттердің ұзындықтары нөлге ұмтылғанда) сегментін бөлу тәсілінен тәуелсіз және әр бөлік сегменттен нүктесін таңдап алудан тәуелсіз шекті (тиянақты) шегі бар болса, осы шекті функциясының -дан -ға дейінгі немесе сегментіндегі анықталған интегралы деп,атайды да оны деп белгілейді..

Мұндағы - интеграл астындағы функция, - интеграл астындағы өрнек, саны –интегралдың төменгі, саны – интегралдың жоғарғы шегі, ал айнымалысы – интегралдау айнымалысы деп аталады.

Берілген анықтамадан жоғарғы, төменгі шектер тұрақты сандар болса, анықталған интеграл тұрақты санға тең болатынын байқаймыз, себебі ол айнымалы қосындының шегі.

Риман бойынша кесіндісінде интегралдагатын барлық функциялар жиынын арқылы белгілейді.

1-теорема. (қажетті шарт ) кесіндісінде анықталған функциясының осы кесіндіде Риман бойынша интегралдануы үшін оның осы кесіндіде шектеулі болуы қажет.

2 –теорема. (жеткілікті шарт) кесіндісінде шектелген функциясының осы интервалда интегралдануы үшін кезкелген саны табылып, параметрі болатын кесіндісінің кезкелген бөліктеуі үшін теңсіздігінің орындалуы жеткілікті.

Анықталған интегралдың орта мәні туралы теорема.

7. Бірінші және екінші текті меншіксіз интегралдар. Меншіксіз интегралдардың жинақтылығының жеткілікті шарттары.

Меншіксізинтегралдың қасиеттері:

аралығында анықталған функциясы әр сегментінде интегралданады деп алдын-ала ұйғарамыз.

. Егерде,аралығында анықталған функциялары үшін меншіксіз интегралды бар болса, онда әр және нақты сандары үшін функциясы сол аралықта интегралданып,

(12)

теңдігі орындалады.

2.меншіксіз интегралы жинақталуы үшін оның әр қалдық интегралы, яғни, болғандағы интегралыжинақталуы қажетті де жеткілікті және олар жинақталған жағдайда

(13)

теңдігі орындалады.(13)теңдігін меншіксіз интегралдың аддитивтік қасиеті деп те атайды.

  1. Көп айнымалыдан тәуелді функция. Көп айнымалыдан тәуелді функцияның шегі. Көп айнымалыдан тәуелді функция үшін Тейлор формуласы.

Көп айнымалылы функциялар үшін Тейлор формуласы.

f(x) E ашық жиынында анықталып, f(x) кірістіруін қанағаттандырсын, яғни Е жиынының әрбір нүктесінде f(x) функциясының реті s–тен аспайтын барлық мүмкін дербес туындылары бар және үзіліссіз болсын. a=( және x=()E нүктелерін жалғайтын кесінді Е жиынында толық жатсын, яғни - (i=1,2,…,n), h=() үшін t[0,1] болғанда a+th==() болсын. Онда [0,1] сегментінде

f(a+th)=f( (1)

күрделі функциясы анықталған болады. f болғандықтан кірістіруі орындалады, яғни бір айнымалы функциясы [0,1] сегментінде s рет үзіліссіз дифференциалданады, сол себептен (1) функциясы үшін болғандағы ( (2)-теңдігі орындалады. Сонымен бірге,(1) бойынша , (2) теңдігінде деп алып, бұл жағдайда 1 болатынын ескере отырып,

f(-f()=f(=+ (3)

теңдігіне келеміз. Егер (3) теңдігінде көмекші функциясынан бастапқы f функциясына толық көшсек, онда солай түрлендірілген (3) теңдігі көп айнымалылы Тейлор формуласы деп аталады.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]