Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КЛ. Материалы в мк.doc
Скачиваний:
418
Добавлен:
21.02.2016
Размер:
6.99 Mб
Скачать

8.5. Старение металла

Старением называют свойство материала изменять свою структуру и свойства со временем. Это связано с тем, что, несмотря на небольшую растворимость углерода в феррит, со временем атомы углерода диффундируют к границам зерен. Количество хрупкого карбида железа увеличивается. Вследствие этого возрастает прочность стали, но снижаются ее пластичность и сопротивление хрупкому разрушению динамической нагрузкой. Старение ускоряется под действием переменных напряжений, повышении температур.

8.6. Влияние температуры

При росте температуры уменьшаются значения модуля упругости, предела текучести и прочности стали. При температуре 600С предел текучести и модуль упругости стремятся к нулю.

Низкие температуры повышают хрупкость стали потому, что ухудшаются пластические свойства металла. При температурах ниже -10С пластичность заметно уменьшается.

8.7. Ударная вязкость

Склонность стали к хрупкому разрушению и чувствительность к концентрации напряжений оцениваются по ударной вязкости.

Ударная вязкость - это работа, необходимая для разрушения стандартного образца с надрезом, относительно поперечного сечения.

Разрушение образца происходит ударным изгибом.

Рис. 8.5. Образец для испытания на ударную вязкость.

Значение ударной вязкости зависит не только от состава и структуры стали, но и от температуры. С понижением температуры ниже 0С значение ударной вязкости резко падает.

Рис. 8.6. Ударная вязкость стали: 1 – Ст3сп; 2 – Ст3кп; 3 – 10Г2С1.

Температура, при которой происходит уменьшение ударной вязкости менее 0,3 МДж/м2, называется порог холодноломкости.

Очень сильно уменьшается ударная вязкость после старения стали. Для строительных сталей значение ударной вязкости при различных температурах и после старения помещены в нормативные документы.

Снижение показателя ударной вязкости ниже 0,3 МДж/м2 не допускается.

8.8. Работа стали при повторных и переменных нагрузках. Наклеп. Усталость стали.

Загрузка и разгрузка металла в пределах упругости не вызывает изменений в работе металла. Графики деформаций является прямолинейным и совпадают. Когда сталь довести до пластических деформаций и разгрузить, то диаграмма разгрузки пойдет параллельно линии деформаций.

Диаграмма повторной загрузки пойдет параллельно линии упругих деформаций и дальше за диаграммой одноразовой нагрузки. Если рассмотреть лишь диаграмму повторной загрузки, то можно отметить, что деформативность металла уменьшилась (  1  ), и условная граница текучести выросла до уровня 1, достигнутого при первой загрузке. Это явление называется наклепом металла. Используется для повышения прочностных показателей стальной арматуры железобетонных конструкций.

Наклеп наблюдается при всех видах холодного обработки, связанной с пластическим деформированием металла (резка, гибка, пробивка отверстий).

Рис. 8.7. Диаграмма деформирования стали с разгрузкой

В металлах, которые не имеют достаточного запаса пластических деформаций, наклеп может приводить к хрупкому разрушению.

Усталостью металла называется его разрушение вследствие повторных нагрузок при напряжениях, ниже предела прочности.

Напряжение, при котором происходит разрушение, называется усталостной прочностью.

Способность металла противостоять такому разрушению называют выносливостью.

Рис. 8.8. Изменение усталостной прочности стали в зависимости от количества циклов загрузки N.

Для стали кривая усталостной прочности асимптотически приближается к некоторому предельному значению Rv - сопротивлению стали усталости.

Сопротивление стали усталости соответствует количество циклов 10. Испытания производят на базе 210 циклов На усталостную прочность влияют: наличие концентраторов; температура; технологические факторы, связанные с особенностями изготовления конструкций; характер загрузки (сжатие или растяжение); значение коэффициента асимметрии цикла

Rv – изменяется от 145 МПа до 27 МПа.

Рис. 8.9. Характеристика асимметрии нагружения.

Разрушение металла от усталости происходит в такой последовательности:

Около дефектов кристаллической решетки, нарушений структуры, концентраторов появляются микротрещины.

Микротрещины являются очень острыми концентраторами. Концентрации напряжений возле них приводят к разрастанию микротрещин в макротрещины.

При дальнейших циклах загрузки рост трещин происходит до разрушения.

Концентраторы напряжений очень негативно влияют на усталостную прочность металла. Поэтому при конструировании металлических конструкций необходимо избегать концентраторов всеми возможными способами.