Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
22BBook.pdf
Скачиваний:
10
Добавлен:
19.02.2016
Размер:
954.31 Кб
Скачать

120

 

 

 

 

 

 

 

CHAPTER 8.

LAPLACE TRANSFORM

so that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1

=

P (sIn

D)

−1

 

−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sIn A) =

P (sIn D)P )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1P −1.

 

 

P −1

 

independent of s,

 

 

 

 

 

 

 

−1

 

Since P and

 

 

are

 

−1

 

 

the s dependence of (sIn A)

resides in the

 

 

(sI

 

D)

. This tells us that the partial fraction decomposition of the

diagonal matrix

−1 n

 

 

 

 

 

 

 

 

 

 

 

 

matrix (sIn A)

is of the form

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

Pj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

λj

 

 

 

 

 

 

 

 

 

(sIn A)−1 =

 

 

 

 

 

 

 

 

 

 

 

 

 

j=1

 

 

 

 

 

 

 

 

where

Pj = P Ej P −1

and Ej is the diagonal matrix with all zeros on the main diagonal except for 1 at the (j, j)th entry. This follows from the fact that

 

n

 

1

 

 

 

X

 

 

Ej

 

 

 

 

 

s

λj

(sIn D)−1 =

 

 

j=1

 

 

 

 

Note that Pj have the property that

 

 

 

 

 

P 2

= Pj .

 

 

 

 

j

 

 

 

 

 

Such matrices are called projection operators.

In general, it follows from Cramer’s method of computing the inverse of a matrix, that the general structure of (sIn A)−1 will be 1/p(s) times a matrix whose entries are polynomials of at most degree n 1 in s. When an eigenvalue, say λ1, is degenerate and of (algebraic) multiplicity m1, then the characteristic polynomial will have a factor (s λ1)m1 . We have seen that if the matrix is diagonalizable, upon a partial fraction decomposition only a single power of (s λ1) will appear in the denominator of the partial fraction decompostion. Finally, we conclude by mentioning that when the matrix A is not diagonalizable, then this is reflected in the partial fraction decomposition of (sIn A)−1 in that some powers of (s λj ) occur to a higher degree than 1.

8.3Exercises

#1.

Use the Laplace transform to find the solution of the initial value problem

dt

=

 

0

1

1

x +

 

12

,

x(0) =

 

0

.

dx

 

 

1

1

0

 

 

0

 

 

 

0

 

 

 

0

1

1

0

 

 

0

#2.

Let A be a n × n matrix whose entries are real numbers and x Rn. Prove that

L(Ax) = AL(x)

where L denotes the Laplace transform.

8.3. EXERCISES

121

#3.

Let Ej denote the diagonal n × n matrix with all zeros on the main diagonal except for 1 at the (j, j) entry.

Prove that Ej2 = Ej .

Show that if P is any invertible n × n matrix, then Pj2 = Pj where Pj := P Ej P −1.

#4.

It is a fact that you will learn in an advanced linear algebra course, that if a 2 × 2 matrix A is not diagonalizable, then there exists a nonsingular matrix P such that

A = P B P −1

where

0

λ

B =

 

λ

1

for some constant λ.

Show that λ must be an eigenvalue of A with algebraic multiplicity 2.

Find an eigenvector of A (in terms of the matrix P ), and show that A has no other eigenvectors (except, of course, scalar multiples of the vector you have already found).

Show that

(sI2 A)−1

1

P E1P −1

 

1

 

P E2P −1 +

1

P N P −1

=

 

+

 

 

s λ

s λ

(s λ)2

where

 

 

N =

 

0

0

.

 

 

 

 

 

 

 

0

1

 

 

 

Relate what is said here to the remarks in the footnote in Exercise 5.5.2.

122

CHAPTER 8. LAPLACE TRANSFORM

Bibliography

[1]V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., SpringerVerlag, N.Y. 1989.

[2]V. I. Arnold, Ordinary Di erential Equations, Second printing of the 1992 edition, Springer-Verlag, Berlin, 2006.

[3]G. Birkho and G-C Rota, Ordinary Di erential Equations 4th ed., John Wiley & Sons, 1989.

[4]W. E. Boyce and R. C. DiPrima, Elementary Di erential Equations and Boundary Value Problems, 7th–9th eds., John Wiley & Sons.

[5]G. Chen, P. J. Morris and J. Zhou, Visualization of special eigenmode shapes of a vibrating elliptical membrane, SIAM Review 36 (1994), 453–469.

[6]B. Temple and C. A. Tracy, From Newton to Einstein, American Math. Monthly 99 (1992), 507–512.

123

Index

Acceleration due to gravity, 1 Acoustic phonons, 94 Angular momentum, 26

Annihilation and creation operators, 113

Bessel functions, 86

Binet’s equation, 28

Catalan numbers, 50

Classical harmonic oscillator, 18, 34 Forced oscillations, 40 Friction, 25

Commutator, 99

Complex exponential function, 37 Addition formula, 38

Euler’s formula, 38

Di erence equations, 47 Constant coe cients, 47

Catalan numbers, 50 Fibonnaci numbers, 48

Di erential equation, definition, 9

Energy conservation, 14, 18

Fibonnaci numbers, 48

Half-life, 23

Harmonic oscillator, 18, 34, 61, 82 Forced oscillations, 40 Quantum, 98

Harmonic oscillator wave functions, 106 Heisenberg Uncertainty Principle, 111 Heisenberg Uncertainty Relation, 99 Helmholtz equation, 83, 93

Hermite polynomials, 101–103, 106, 113 Generating functions, 113

Hooke’s Law, 15

Forced oscillations, 40 Resonance, 42

Frequency, 18

Friction, 25

Nonlinear correction, 25

Integrating factor, 10

Kinetic energy, 14, 95, 99 Kolmogorov forward equations, 63

Laplace transform, 115

Application to radioactive decay, 63 Laplacian, 84

Lax pairs, 91

Linear first order ODE, 9 integrating factor, 10 Loan payments, 11

MatLab, 4, 21, 39

Symbolic Math Toolbox, 4 Matrix exponential, 53

Applied to matrix ODE, 56 Nilpotent matrix, 61

Matrix ODE, 56

Alternating masses-spring problem, 94 Inhomogeneous, 60

Radioactive decay, 63

Newton’s equations, 1, 14, 68, 89, 97 Central field, 26

Inverse square law, 28 Newton’s principle of determinacy, 1 Normal modes, 72

Optical phonons, 94

Order of a DE, 9

Pendulum, 1

Coupled, 88

Period, 18

Planck’s constant, 98

Population dynamics, 24

Potential energy, 14, 95, 99

124

INDEX

125

Quantum harmonic oscillator, 98

Annihilation and creation operators, 113

Hermite polynomials, 102

Quantization of energy, 103

Quantum mechanics, 97

State space, 97

Reduction of order, 35

Rigid body motion, 28

Schr¨odinger equation, 97

Second order linear ODE, 31

Bessel functions, 86

Constant coe cients, 35

Vector space of solutions, 31

Wronskian, 33

Toda chain, 91

Vibrating membrane, 83

Circular domain, 85

Elliptical domain, 87

Rectangular domain, 85, 93

Vibrating string, 79

Energy, 95

Wave equation, 79

Helmholtz equation, 83

Relation to harmonic oscillators, 82

Separation of variables, 80

Vibrating membrane, 83

Vibrating string, 79

Weighted string, 67

Circle, 88

Friction, 93

Normal modes, 72

Wronskian, 33, 45

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]