Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurs_lektsy_po_VvTK_2013.doc
Скачиваний:
429
Добавлен:
10.06.2015
Размер:
5.49 Mб
Скачать

На рис.1 представлен график периодического изменения функции f(X), которое характеризуется параметрами:

Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы.

Период — наименьший промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T(c).

Рис.1.1. Периодическая функция времени

Частота число колебаний в единицу времени, f (Гц, с−1), (в оптике принято частоту обозначать символом(Гц, с−1)).

Период колебаний T и частота f — обратные величины:

и .

В круговых или циклических процессах вместо характеристики «частота» обычно используется понятие круговая (циклическая) частота.

Круговая (циклическая) частота (рад/с, Гц, с−1), показывает число колебаний за единиц времени:

.

К этой величине следует относиться как к удобной вспомогательной математической величине

Фаза колебаний определяет состояние колебательной системы в любой момент времени. Измеряется в радианах (рад).

Фаза колебания в начальный момент времени (t=0) называется начальной фазой (j0).

Гармонические колебания.

Гармоническое колебание — это колебание, при котором физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний может быть представлено в виде:

,

где х — смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А — амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω — циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд  — полная фаза колебаний,  — начальная фаза колебаний. Гармоническое колебание может рассматриваться как проекция вектора амплитудой А, при его вращении с угловой скоростью ω (рис.2).

Рис. 1.2. Эволюция во времени смещения x при гармоническом движении .

Мгновенная скорость является первой производной координаты по времени, поэтому функция (7) является первой производной от функции (3) . Величинаравна максимальной скорости движения точки при гармонических колебаниях. Отметим, что при гармонических колебаниях скорость точки также изменяется по гармоническому закону. Аналогично зависимость ускорения от времени (8) является первой  производной от скорости (7) или второй производной координаты (3)

На рис. показаны графики зависимостей координаты , скоростии ускоренияточки, совершающей гармонические колебания. Все эти зависимости описываются гармоническими функциями одного периода (одинаковой частоты), сдвинутыми друг относительно друга на четверть периода, (которой соответствует сдвиг фазы на. Между нулями и экстремумами этих функций существуют очевидные соответствия: координата движущейся точки достигает максимального и минимального ения, когда ее скорость обращается в нуль; модуль скорости максимален, когда точка проходит через нулевую координату; модуль ускорения максимален, когда скорость равна нулю, а отклонение точки максимально. Отметим, что ускорение при колебательном процессе всегда противоположно по знаку смещению:.

 При гармонических колебаниях ускорение точки пропорционально его координате, с отрицательным коэффициентом пропорциональности.

Рис.1. 3. Эволюция во времени перемещения x, скорости v и ускорения a при гармоническом движении.

Рис. 1.4. Векторное представление и эволюция во времени перемещения x, скорости v и ускорения a при гармоническом движении.

Важное свойство гармонических колебаний: период и частота этих колебаний не зависят от их амплитуды. Амплитуда колебаний определяется начальными условиями, то их частота полностью определяется параметрами колебательной системы (собственные колебания)и внешним воздействием (вынужденные колебания). Гармонические колебания возникают в физических системах различной природы, описываемых дифференциальными уравнениями: .

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

  • Очень часто[2] колебания с малой амплитудой, как свободные, так и вынужденные, которые происходят в реальных системах, имеют форму гармонических колебаний или очень близкую к ним.

  • Широкийкласс периодических функций может быть разложен на сумму тригонометрических компонентов с кратными частотами (разложение Фурье). Другими словами, любое колебание может быть представлено как сумма гармонических колебаний (см.лекцию 3).

  • Для широкого класса систем откликом на гармоническое воздействие является также гармоническое колебание (свойство линейности), при этом связь воздействия и отклика является устойчивой характеристикой системы. Это позволяет исследование прохождения колебаний произвольной формы через системы свести к решению систем алгебраических уравнений.

Не все колебания являются гармоническими, однако этот тип колебаний является простейшей моделью колебательного движения достаточно часто встречающегося в действительности. Название этого вида движения связано с тем, что функции синус и косинус называются гармоническими функциями, как наиболее совершенные и изящные (соответствуют термину – гармония, греч. ἁρμονία —порядок, слаженность, соразмерность, стройность — комплекс понятий теории музыки. Гармоничной называется приятная для слуха слаженность звуков).

Псевдогармоническое колебание — разновидность колебаний, для которых возвращающая сила (сила, стремящаяся вернуть тело в равновесное состояние) не является линейной по величине отклонения. Другими словами, это колебания, для которых «гибкость» системы зависит от перемещения. Общий вид дифференциальных уравнений описывающих псевдогармонические колебания имеет вид:

.

Если можно пренебречь всеми членами F нелинейными по x, то данное уравнение переходит в уравнение гармонических колебаний.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]