Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shackelford J.F.Material science and engineering handbook.2001.pdf
Скачиваний:
22
Добавлен:
23.08.2013
Размер:
16.14 Mб
Скачать

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 1 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Borides

Titanium Diboride (TiB2)

19x103

 

 

(98% dense)

5.37x103

 

 

(6.0 μm grain size, ρ=4.46g/cm3)

6.2x103

 

 

(3.5 μm grain size, ρ=4.37g/cm3, 0.8wt% Ni)

5.7x103

 

 

(6.0 μm grain size, ρ=4.56g/cm3, 0.16wt% Ni)

11.0x103

 

 

(12.0 μm grain size, ρ=4.66g/cm3, 9.6wt% Ni)

6.29x103

 

Carbides

Hafnium Monocarbide (HfC)

 

 

 

(ρ = 11.9 g/cm3)

34.67x103

room temp.

 

(ρ = 11.9 g/cm3)

12.64x103

2000 oC

 

(ρ = 11.9 g/cm3)

4.78x103

2200 oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 2 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Carbides (Con’t)

Silicon Carbide (SiC)

27x103

room temp.

 

 

25x103

1300 oC

 

 

11x103

1400 oC

 

 

15x103

1800 oC

 

(with 1 wt% Be addictive)

58x103

 

 

(with 1wt% B addictive)

42x103

 

 

(with 1wt% Al addictive)

136x103

 

 

Titanium Monocarbide (TiC)

 

 

 

(ρ = 4.85 g/cm3)

32.67x103

room temp.

 

(ρ = 4.85 g/cm3)

13.6x103

2000oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 3 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Carbides (Con’t)

Tungsten Monocarbide (WC)

55.65-84x103

room temp.

Carbides (Con’t)

Zirconium Monocarbide (ZrC)

16.6-22.5x103

room temp.

 

 

8.3x103

1250 oC

 

 

5.14x103

1750 oC

 

 

2.5x103

2000 oC

Nitrides

Aluminum Nitride (AlN)

 

 

 

(hot pressed)

38.5x103

25oC

 

 

27x103

1000oC

 

 

18.1x103

1400oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 4 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Nitrides (Con’t)

Boron Nitride (BN)

 

 

 

parallel to c axis

7.28-13.2x103

25 oC

 

 

7.03x103

300 oC

 

 

1.90x103

700 oC

 

 

1.08x103

1000 oC

 

 

1.25x103

1500 oC

 

 

1.50x103

1800 oC

 

 

2.45x103

2000 oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 5 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Nitrides (Con’t)

parallel to a axis

15.88x103

25 oC

 

 

15.14x103

300 oC

 

 

3.84x103

700 oC

 

 

2.18x103

1000 oC

 

Titanium Mononitride (TiN)

34x103

 

 

(10wt% AlO and 10wt% AlN)

13.34x103

 

 

(30wt% AlO and 10wt% AlN)

23.93x103

 

 

(30wt% AlO and 30wt% AlN)

33.25x103

 

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 6 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Nitrides (Con’t)

Trisilicon Tetranitride (Si3N4)

 

 

 

(hot pressed)

65.3-159.5x103

20oC

 

(sintered)

39.9-121.8x103

20oC

 

(reaction sintered)

7.25-43.5x103

20oC

Oxides

Aluminum Oxide (Al2O3)

 

 

 

(single crystal)

131 x103

 

 

 

60 x103

room temp.

 

(80% dense, 3μm grain size)

56x103

20 oC

 

(80% dense, 3μm grain size)

62x103

600 oC

 

(80% dense, 3μm grain size)

58x103

900 oC

 

(80% dense, 3μm grain size)

42x103

1100 oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 7 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Oxides (Con’t)

Aluminum Oxide (Al2O3) (Con’t)

 

 

 

(80% dense, 20μm grain size)

30x103

20 oC

 

(80% dense, 20μm grain size)

28x103

600 oC

 

(80% dense, 20μm grain size)

31x103

900 oC

 

(80% dense, 20μm grain size)

30x103

1100 oC

 

(zirconia toughened alumina, 15 vol% ZrO2)

137x103

 

 

(zirconia toughened alumina, 25 vol% ZrO2)

139x103

 

 

(zirconia toughened alumina, 50 vol% ZrO2)

145x103

 

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 8 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Oxides (Con’t)

Beryllium Oxide (BeO)

24-29 x103

room temp.

 

Dichromium Trioxide (Cr2O3)

>38x103

 

 

Hafnium Dioxide (HfO2)

10x103

 

 

Titanium Oxide (TiO2)

10-14.9x103

room temp.

 

Zirconium Oxide (ZrO2)

 

 

 

(5-10 CaO stabilized)

20-35x103

room temp.

 

(MgO stabilized)

30x103

room temp.

 

(hot pressed yittria doped zirconia)

222x103

 

 

(sintered yittria doped zirconia)

148x103

 

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 9 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Oxides (Con’t)

Cordierite (2MgO 2Al2O3 5SiO2)

 

 

 

(ρ=2.51g/cm3)

16x103

25oC

 

(ρ=2.3g/cm3)

15x103

400oC

 

(ρ=2.1g/cm3)

8x103

800oC

 

(ρ=1.8g/cm3)

3.4x103

1200oC

 

Mullite (3Al2O3 2SiO2)

6-27x103

25oC

 

(ρ=2.77g/cm3)

8.5x103

25oC

 

(ρ=2.77g/cm3)

13.5x103

400oC

 

(ρ=2.77g/cm3)

16.7x103

800oC

 

(ρ=2.77g/cm3)

11.5x103

1200oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 244. MODULUS OF RUPTURE FOR CERAMICS

(SHEET 10 OF 10)

 

 

Modulus of Rupture

 

Class

Ceramic

(psi)

Temperature

 

 

 

 

 

 

 

 

Silicide

Molybdenum Disilicide (MoSi2)

 

 

 

(ρ = 5.57 g/cm3)

18.57x103

room temp.

 

(sintered)

50.7x103

room temp.

 

(sintered)

67.25x103

980oC

 

(sintered)

86.00x103

1090oC

 

(hot pressed)

36-57x103

room temp.

 

(hot pressed)

72.00x103

1090oC

 

(hot pressed)

55.00x103

1200oC

 

 

 

 

To convert from psi to MPa, multiply by 145.

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991).

©2001 CRC Press LLC

Table 245. RUPTURE STRENGTH OF REFRACTORY METAL ALLOYS

(SHEET 1 OF 2)

 

 

 

 

 

Temperature

10-h rupture

Class

Alloy

Alloying Additions (%)

Form

Condition

(°F)

(ksi)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Niobium and

Pure Niobium

All

Recrystallized

2000

5.4

Niobium Alloys

 

 

 

 

 

 

 

Nb–1Zr

1 Zr

All

Recrystallized

2000

14

 

SCb291

10 Ta, 10 W

Bar, Sheet

Recrystallized

2000

9

 

C129

10 W, 10 Hf, 0.1 Y

Sheet

Recrystallized

2400

15

 

FS85

28 Ta, 11 W, 0.8 Zr

Sheet

Recrystallized

2400

12

 

SU31

17 W, 3.5 Hf, 0.12 C, 0.03 Si

Bar, Sheet

Special Thermal Processing

2400

22

Molybdenum and

Pure Molybdenum

All

Stress-relieved Annealed

1800

25

Molybdenum Alloys

 

 

 

 

 

 

 

Low C Mo

None

All

Stress-relieved Annealed

1800

24

 

TZM

0.5 Ti, 0.08 Zr, 0.015 C

All

Stress-relieved Annealed

2400

23

 

TZC

1.0 Ti, 0.14 Zr, 0.02 to 0.08 C

All

Stress-relieved Annealed

2400

28

 

Mo–5Re

5 Re

All

Stress-relieved Annealed

3000

1

 

Mo–30W

30 W

All

Stress-relieved Annealed

2000

20

 

 

 

 

 

 

 

To convert (ksi) to (MPa), multiply by 6.89

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

©2001 CRC Press LLC

Table 245. RUPTURE STRENGTH OF REFRACTORY METAL ALLOYS

(SHEET 2 OF 2)

 

 

 

 

 

Temperature

 

10-h rupture

Class

Alloy

Alloying Additions (%)

Form

Condition

(°F)

 

(ksi)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tantalum Alloys

Unalloyed

None

All

Recrystallized

2400

 

2.5

 

TA–10W

10 W

All

Recrystallized

2400

 

20

Tungsten Alloys

Unalloyed

None

Bar, Sheet,

Stress-relieved Annealed

3000

 

6.8

Wire

 

 

 

 

 

 

 

 

 

W–2 ThO2

2 ThO2

Bar, Sheet,

Stress-relieved Annealed

3000

 

18

 

Wire

 

 

W–3 ThO2

3 ThO2

Bar, Wire

Stress-relieved Annealed

3000

 

18

 

W–4 ThO2

4 ThO2

Bar

Stress-relieved Annealed

3000

 

18

 

W–15 Mo

15 Mo

Bar, Wire

Stress-relieved Annealed

3000

 

12

 

W–50 Mo

50 Mo

Bar, Wire

Stress-relieved Annealed

3000

 

12

 

W–25 Re

25 Re

Bar, Sheet,

Stress-relieved Annealed

3000

 

10

 

Wire

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To convert (ksi) to (MPa), multiply by 6.89

 

 

 

 

 

 

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p106, (1994).

 

 

 

 

 

 

 

 

 

©2001 CRC Press LLC

Table 246. RUPTURE STRENGTH OF SUPERALLOYS

(SHEET 1 OF 3)

 

 

Stress Rupture

 

 

 

 

Alloy*

 

100 h

1000 h

Temperature (°C)

(MPa)

(MPa)

 

 

 

 

 

 

 

 

Incoloy 800

650

220

145

 

760

115

69

 

870

45

33

Incoloy 801

650

250

 

730

145

 

815

62

Incoloy 802

650

240

170

 

760

145

105

 

870

97

62

Inconel 600

815

55

39

 

870

37

24

Inconel 601(a)

540

400

 

870

48

30

 

980

23

14

Inconel 617(b)

815

140

97

 

925

62

 

980

41

Inconel 625(a)

650

440

370

 

815

130

93

 

870

72

48

Inconel 718(c)

540

951

 

595

860

760

 

650

690

585

Inconel 751(d)

815

200

125

 

870

120

69

 

 

 

 

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).

©2001 CRC Press LLC

Table 246. RUPTURE STRENGTH OF SUPERALLOYS

(SHEET 2 OF 3)

 

 

Stress Rupture

 

 

 

 

Alloy*

 

100 h

1000 h

Temperature (°C)

(MPa)

(MPa)

 

 

 

 

 

 

 

 

Inconel X–750(e)

540

827

 

870

83

45

 

925

58

21

N–155, bar(f)

650

360

295

 

730

195

150

 

870

97

66

N–155(g)

650

380

290

N–155, sheet(f)

980

39

20

Nimonic 75(h)

815

38

24

 

870

23

15

 

925

14

10

 

980

7.6

Nimonic 80A(j)

540

825

 

815

185

115

 

870

105

Nimonic 90(j)

815

240

155

 

870

150

69

 

925

69

Nimonic 105(k)

815

325

225

 

870

210

135

Nimonic 115(m)

815

425

315

 

870

315

205

 

925

205

130

 

 

 

 

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).

©2001 CRC Press LLC

Table 246. RUPTURE STRENGTH OF SUPERALLOYS

(SHEET 3 OF 3)

 

 

Stress Rupture

 

 

 

 

Alloy*

 

100 h

1000 h

Temperature (°C)

(MPa)

(MPa)

 

 

 

 

 

 

 

 

Nimonic 263(n)

815

170

105

 

870

93

46

 

925

45

 

 

 

 

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p391, (1993).

*(a) Solution treat 1150 °C.

(b)Solution treat 1175 °C.

(c)Heat treat to 980 °C plus 720 °C hold for 8 h, furnace cool to 620 °C hold for 8 h.

(d)730 °C hold for 2h.

(e)Heat treat to 1150 °C plus 840 °C hold for 24h, plus 705 °C hold for 20h.

(f)Solution treated and aged.

(g)Stress-relieved forging.

(h)Heat treat to 1050 °C hold for 1 h.

(j)Heat treat to 1080 °C hold for 8 h, plus 700 °C hold for 16 h.

(k)Heat treat to 1150 °C hold for 4 h, plus 1050 °C hold for 16 h, plus 850 °C hold for 16 h.

(m)Heat treat to 1190 °C hold for 1.5 h, plus 1100 °C hold for 6 h.

(n)Heat treat to 1150 °C hold for 2 h, water quench, plus 800 °C hold for 8 h.

©2001 CRC Press LLC

Table 247. MODULUS OF RUPTURE FOR

SI3N4 AND AL2O3COMPOSITES

 

 

 

Modulus of Rupture

 

 

 

 

 

(MPa)

 

 

Dispersed

 

 

 

 

 

 

 

 

 

 

 

 

 

Matrix

Phase

RT

 

1000 °C

 

1200 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Si3N4+ 6 wt % Y2O3

None

110.9 ± 1.6

 

88.3

± 3.5

 

49.2 ± 5.0

Si3N4+ 6 wt % Y2O3

TiC

80.6 ± 5.9

 

120.4

± 12.2

 

64.4 ± 2.9

 

(Ti, W) C

75.5 ± 3.2

 

86

± 0

 

52.9 ± 0.5

 

WC

89.1 ± 31.8

 

136.4 ± 1.6

 

55.7 ± 0.5

 

TaC

86.2 ± 7.3

 

124.5

± 16.0

 

43.2 ± 2.0

 

HfC

86 ± 0.8

 

 

68.6 ± 0.5

 

SiC

97.6 ± 8.5

 

94.0

± 4.9

 

52.3 ± 3.2

Al2O3

TiC

72.2 ± 13.0

 

69.4

± 4.3

 

57.0 ± 4.1

 

 

 

 

 

 

 

 

Containing 30 Vol % of Metal Carbide Dispersoid (2 µm average particle diameter)

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p169,(1994).

©2001 CRC Press LLC

Table 248. POISSON'S RATIO OF

WROUGHT TITANIUM ALLOYS

Class

Metal or Alloy

Poisson's Ratio

 

 

 

 

 

 

Commercially Pure

99.5 Ti

0.34

 

99.2 Ti

0.34

 

99.1 Ti

0.34

 

99.0Ti

0.34

 

99.2 Ti–0.2Pd

0.34

Near Alpha Alloys

Ti-8Al-1Mo-1V

0.32

 

Ti-5Al-5Sn-2Zr-2Mo-0.25Si

0.326

Alpha-Beta Alloys

Ti-6Al-4V

0.342

 

Ti-6Al-4V (low O2)

0.342

 

Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si

0.327

Beta Alloys

Ti-13V-11Cr-3Al

0.304

 

 

 

Data from ASM Metals Reference Book, Third Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p511, (1993).

©2001 CRC Press LLC

Table 249. POISSONS RATIO FOR CERAMICS

(SHEET 1 OF 2)

Class

Ceramic

Poisson’s Ratio

 

 

 

 

 

 

Borides

Titanium Diboride (TiB2)

0.09-0.28

 

(6.0 μm grain size, ρ=4.46g/cm3)

0.10

 

(3.5 μm grain size, ρ=4.37g/cm3, 0.8wt% Ni)

0.12

 

(6.0 μm grain size, ρ=4.56g/cm3, 0.16wt% Ni)

0.11

 

(12.0 μm grain size, ρ=4.66g/cm3, 9.6wt% Ni)

0.15

 

Zirconium Diboride (ZrB2)

0.144

Carbides

Boron Carbide (B4C)

0.207

 

Hafnium Monocarbide (HfC)

0.166

 

Silicon Carbide (SiC)

 

 

(ρ = 3.128 g/cm3)

0.183-0.192 at room temp.

 

Tantalum Monocarbide (TaC)

0.1719 -0.24

 

Titanium Monocarbide (TiC)

0.187-189

 

Tungsten Monocarbide (WC)

0.24

 

Zirconium Monocarbide (ZrC)

 

 

(ρ = 6.118 g/cm3)

0.257

Nitrides

Trisilicon tetranitride (Si3N4)

0.24

 

(presureless sintered)

0.22-0.27

Oxides

Aluminum Oxide (Al2O3)

0.21-0.27

 

Beryllium Oxide (BeO)

0.26-0.34

 

Cerium Dioxide (CeO2)

0.27-0.31

 

Magnesium Oxide (MgO)

 

 

(ρ = 3.506 g/cm3)

0.163 at room temp.

 

Thorium Dioxide (ThO2)

 

 

(ρ=9.722 g/cm3)

0.275

 

 

 

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

Table 249. POISSONS RATIO FOR CERAMICS

(SHEET 2 OF 2)

Class

Ceramic

Poisson’s Ratio

 

 

 

 

 

 

Oxides

Titanium Oxide (TiO )

0.28

(Con’t)

2

 

 

Uranium Dioxide (UO2)

 

 

(ρ=10.37 g/cm3)

0.302

 

Zirconium Oxide (ZrO2)

0.324-0.337 at room temp.

 

(partially stabilized)

0.23

 

(fully stabilized)

0.23-0.32

 

(plasma sprayed)

0.25

 

Cordierite (2MgO 2Al2O3 5SiO2)

 

 

(ρ=2.3g/cm3)

0.21

 

(ρ=2.1g/cm3)

0.17

 

(glass)

0.26

 

Mullite (3Al2O3 2SiO2)

 

 

(ρ=2.779 g/cm3)

0.238

 

Spinel (Al2O3 MgO)

 

 

(ρ=3.510 g/cm3)

0.294

Silicide

Molybdenum Disilicide (MoSi2)

0.158-0.172

 

 

 

Source: data compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, New York, (1964); Smithells Metals Reference Book, Eric A. Brandes, ed., in association with Fulmer Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Source, American Ceramic Society (1986-1991)

©2001 CRC Press LLC

Table 250. POISSONS RATIO OF GLASS

(SHEET 1 OF 2)

Class

Composition

Poisson’s Ratio

Temperature

 

 

 

 

 

 

 

 

SiO2 glass

 

0.166–0.177

room temp.

SiO2–Na2O glass

(15% mol Na2O)

0.183

room temp.

 

(20% mol Na2O)

0.203

room temp.

 

(25% mol Na2O)

0.219

room temp.

 

(30% mol Na2O)

0.236

room temp.

 

(33% mol Na2O)

0.249

room temp.

 

(35% mol Na2O)

0.248

room temp.

SiO2–PbO glass

(24.6% mol PbO)

0.249

 

 

(30.0% mol PbO)

0.174

 

 

(35.7% mol PbO)

0.252

 

 

(38.4% mol PbO)

0.150

 

 

(45.0% mol PbO)

0.219

 

 

(50.0% mol PbO)

0.259

 

 

(55.0% mol PbO)

0.222

 

 

(60.0% mol PbO)

0.281

 

 

(65.0% mol PbO)

0.283

 

B2O3 glass

 

0.288–0.309

room temp.

 

 

 

 

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983

©2001 CRC Press LLC

Table 250. POISSONS RATIO OF GLASS

(SHEET 2 OF 2)

Class

Composition

Poisson’s Ratio

Temperature

B2O3–Na2O glass

(5.5% mol Na2O)

0.279

 

 

(10% mol Na2O)

0.2740

15˚C

 

(15.4% mol Na2O)

0.271

 

 

(20% mol Na2O)

0.2860

15˚C

 

(22.8% mol Na2O)

0.272

 

 

(25% mol Na2O)

0.2713

15˚C

 

(29.8% mol Na2O)

0.274

 

 

(33.3% mol Na2O)

0.2771

15˚C

 

(37% mol Na2O)

0.2739

15˚C

 

(37.25% mol Na2O)

0.292

 

Source: data compiled by J.S. Park from O. V. Mazurin, M. V. Streltsina and T. P. Shvaiko– Shvaikovskaya, Handbook of Glass Data, Part A and Part B, Elsevier, New York, 1983

Table 251. POISSON'S RATIO OF

SILICON CARBIDE SCS–2–AL

Fiber orientation

No. of plies

Poisson's Ratio

 

 

 

 

 

 

6, 8, 12

0.268

90°

6, 12,40

0.124

± 45°

8, 12, 40

0.395

 

 

 

Data from ASM Engineering Materials Reference Book, Second Edition, Michael Bauccio, Ed., ASM International, Materials Park, OH, p149,(1994).

©2001 CRC Press LLC

Table 252. COMPRESSION POISSONS RATIO OF

TREATED DUCTILE IRONS

Treatment

Compression Poisson’s Ratio

 

 

 

 

60-40-18

0.26

65-45-12

0.31

80-55-06

0.31

120 90-02

0.27

 

 

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

Table 253. TORSION POISSONS RATIO OF

TREATED DUCTILE IRONS

Treatment

Torsion Poisson’s Ratio

 

 

 

 

60-40-18

0.29

65-45-12

0.29

80-55-06

0.31

120 90-02

0.28

 

 

Source: data from ASM Metals Reference Book, Second Edition, American Society for Metals, Metals Park, Ohio 44073, p169-170, (1984).

©2001 CRC Press LLC

Соседние файлы в предмете Электротехника