Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KL_GIDRAVLIKA.doc
Скачиваний:
145
Добавлен:
31.05.2015
Размер:
7.52 Mб
Скачать

14.2. Истечение через насадки при постоянном напоре

Внешним цилиндрическим насадком называется короткая трубка длиной, равной нескольким диаметрам без закругления входной кромки (рис. 14.4, а). На практике такой насадок часто получается в тех случаях, когда выполняют сверление в толстой стенке и не обрабатывают входную кромку (рис. 14.4, б).

Истечение через такой насадок в газовую среду может происходить двояко. Схема течения, соответствующая первому режиму, показана на рис. 14.4, а и рис. 14.4, б. Струя после входа в насадок сжимается примерно так же, как и при истечении

Рис. 14.4. Истечение через внешний цилиндрический насадок

через отверстие в тонкой стенке. Затем вследствие взаимодействия сжатой части струи с окружающей ее завихренной жидкостью, струя постепенно расширяется до размеров отверстия и из насадка выходит полным сечением. Этот режим истечения называют безотрывным. Так как на выходе из насадка диаметр струи равен диаметру отверстия, то ε = 1 и, следовательно, μ= φ.

Осредненные значения коэффициентов для этого режима истечения маловязких жидкостей (большие Re) следующие: μ = φ = 0,8; = 0,5.

Коэффициент μ расхода цилиндрического насадка при описанном (первом) режиме истечения жидкости в газовую среду может определяться по эмпирической формуле

. (14.15)

Минимальная относительная длина насадка l/d, при которой может реализоваться первый режим истечения, равна приблизительно единице. Однако и при достаточном значении l/d не всегда возможен этот режим.

Найдем давление внутри насадка и условие, при котором возможен первый, безотрывный режим истечения. Пусть истечение жидкости происходит под действием давления в среду газа с давлением . Расчетный напор при совершенном сжатии (это понятие применимо и для насадов) в этом случае

. (14.16)

Так как в струе на выходе из насадка давление равно , в суженном месте струи внутри насадка, где скорость увеличена, давлениеp1 понижено по сравнению с р2. При этом чем больше напор, под которым происходит истечение, а следовательно, и расход через насадок, тем меньше абсолютное давление в суженном месте струи внутри насадка. Разность давлений 2 - р1) растет пропорционально напору Н.

Составим уравнение Д. Бернулли для сечений 1-1 и 2-2 (рис. 14.4, а):

. (14.17)

Последний член уравнения представляет собой потерю напора на расширение потока, которое в данном случае происходит примерно так же, как и при внезапном расширении русла, и, следовательно, определяется формулой (13.7). Сжатие струи внутри насадка оценивается тем же коэффициентом сжатия , что и в случае отверстия, поэтому на основании уравнения расхода

. (14.18)

Исключив с помощью этого соотношения скорость v1 из ранее записанного уравнения Д. Бернулли и заменив в нем скорость v2 ее выражением через коэффициент скорости насадка

, (14.19)

найдем падение давления внутри насадка:

. (14.20)

Подставляя сюда φ = 0,8 и ε = 0,63, получаем

. (14.21)

При некотором критическом напоре Нкр абсолютное давление внутри насадка (сечение 1-1) становится равным нулю (или точнее давлению насыщенных паров), и поэтому

. (14.22)

Следовательно, при Н > Hкр давление pl должно было бы стать отрицательным, но отрицательных давлений в жидкости практически не бывает, поэтому и первый режим истечения при Н > Hкр делается невозможным. Опыт это подтверждает и показывает, что при HHкр происходит внезапное изменение режима истечения, переход от первого режима ко второму (рис. 14.4, в).

Второй режим истечения характеризуется тем, что струя после сжатия уже не расширяется, а сохраняет цилиндрическую форму и перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становится точно таким же, как и из отверстия в тонкой стенке, с теми же значениями коэффициентов.

Внешний цилиндрический насадок имеет существенные недостатки: на первом режиме - большое сопротивление и недостаточно высокий коэффициент расхода, а на втором - очень низкий коэффициент расхода. Недостатком является также двойственность режима истечения в газовую среду при Н < Нкр, а следовательно, двузначность расхода при данномН.

Внешний цилиндрический насадок может быть значительно улучшен путем закругления входной кромки (рис. 14.4, б - штриховые линии) или устройства конического входа с углом конусности около 60°. Чем больше радиус закругления, тем выше коэффициент расхода и ниже коэффициент сопротивления. В пределе при радиусе кривизны, равном толщине стенки, цилиндрический насадок приближается к коноидальному насадку, или соплу (рис.14.5), обеспечивающему безотрывность течения и параллельноструйность в выходном сечении.

Рис. 14.5. Коноидальный насадок (сопло)

Это весьма распространенный насадок, так как он имеет коэффициент расхода, близкий к единице, и очень малые потери (коэффициент сжатия ε = 1), а также устойчивый режим течения без кавитации. Значения коэффициента сопротивления те же, что и при плавном сужении, т.е. ξ = 0,03 ÷ 0,1 (большим Re соответствуют малые , и наоборот). В соответствии с этимμ = φ = 0,99 ÷ 0,96.

Диффузорный насадок представляет собой комбинацию сопла и диффузора (рис. 14.6).

Рис. 14.6. Диффузорный насадок

Приставка диффузора к соплу влечет за собой снижение давления в узком месте насадка, а следовательно, увеличение скорости и расхода жидкости через него. При том же диаметре узкого сечения, что и у сопла, и том же напоре диффузорный насадок может дать значительно больший расход (увеличение до 2,5 раза), чем сопло. Однако использовать диффузорный насадок можно лишь при небольших напорах (Н = 1 ÷ 4 м), так как иначе в узком месте насадка возникает кавитация.

Внутренний цилиндрический насадок, или насадок Борда, изображен на рис. 14.7.

Рис. 14.7. Внутренний цилиндрический насадок

Так как частицы жидкости приближаются к входному отверстию насадка из всего прилежащего объема, то степень сжатия струи в данном насадке больше, а коэффициент меньше, чем во внешнем цилиндрическом насадке:ε = Sc / S0 = 1/2. Этому значению ε соответствуют значения коэффициентов расхода μ = 0,71 и потерь ξ = 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]