Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка микрофлора 1.docx
Скачиваний:
231
Добавлен:
20.05.2015
Размер:
1.01 Mб
Скачать

Основные функции микрофлоры человека

– Морфокинетическое действие

– Регуляция газового состава полостей

– Участие в водно-солевом обмене, поддержании рН и регуляции анаэробиоза

–Участие в метаболизме углеводов, белков, липидов и других соединений

– Участие в рециркуляции желчных кислот, стероидов и других макромолекул

– Продукция биологически активных соединений (летучие жирные кислоты, витамины, гормоны, токсины, антибиотики и т.д.)

– Иммуногенная роль

– Обеспечение колонизационной резистентности и предотвращение транслокации

–Детоксикация экзогенных и эндогенных субстратов и метаболитов; антимутагенная активность

– Хранилище микробных плазмидных и хромосомных генов

–Участие в этиопатогенезе гнойно-воспалительных и других заболеваний

Морфокинетическое действие

Микрофлора стимулирует рост пролиферативных эпителиальных клеток. Способствует развитию слизистой оболочки и клеток продуцирующих муцин, а так же развитию ворсинок желудочно – кишечного тракта. Присутствие в желудочно – кишечном тракте микроорганизмов стимулирует перистальтику тонкого и толстого кишечника, опорожнение желудка, сокращает транзитное время для пищи, участвует в моторной функции кишечника.

Регуляция газового состава полостей

В результате жизнедеятельности микроорганизмов в кишечнике человека образуются различные газообразные продукты (водород, метан, аммиак, углекислый газ, сероводород и др.), которые участвуют в стимуляции перистальтики кишечника.

Участие в водно–солевом обмене, поддержании рН и регуляции анаэробиоза

Микрофлора желудочно–кишечного тракта оказывает существенное влияние на водно-солевой обмен хозяина, участвуя в процессах всасывания воды, электролитов и других неорганических соединений из кишечного содержимого, а также в секреции тех же компонентов в просвет кишечника. Микроорганизмы, присутствующие в кишечнике, активно участвуют в поддержании рН содержимого толстого кишечника на уровне 7,2–7,4. Это достигается за счет продукции анаэробными микроорганизмами летучих жирных кислот и регуляции содержания в просвете бикарбоната. Давление кислорода на поверхности слизистой толстой кишки также достаточно стабильная величина и составляет 85–100 мм ртутного столба. Эта стабильность анаэробиоза в кишечнике достигается за счет продукции микроорганизмами короткоцепочечных жирных кислот и их перемещения через слизистую, сопровождающуюся связыванием кислорода, поступающего в эту область по капиллярам. Анаэробиоз в этой области также поддерживается разнообразными процессами анаэробного дыхания, осуществляемыми анаэробными микроорганизмами за счет использования в качестве конечного акцептора электронов нитратов, нитритов, сульфата и сульфита.

Участие в метаболизме углеводов, белков, липидов и других соединений

Огромное число разнообразных микроорганизмов, постоянно или транзиторно присутствующих на коже и слизистых, принимает активное участие в метаболизации разнообразных субстратов растительного, животного и микробного происхождения, поступающих в организм хозяина извне или образующихся эндогенно. Даже при голодании микроорганизмы, присутствующие в пищеварительном тракте, обеспечиваются пищевыми субстратами за счет слущеных эпителиальных клеток и пищеварительных соков. Анаэробные бактерии кишечника способны осуществлять гидролиз гликозидов, глюкоронов, сульфаматов, амидов, нитратов и различных эфиров, дегидроксилировать С– и Н– гидроксигруппы, декарбоксилировать и дезаминировать различные аминокислоты, вызывать диметилирование, дегидрогенирование и дегалогенирование различных соединений, восстанавливать двойные связи, нитроазогруппы, спирты, альдегиды, вызывать ароматизацию, этерификацию, ацелирование многих соединений.

Участие в рециркуляции желчных кислот, стероидов и других макромолекул

Первичные желчные кислоты (С24) синтезируются в печени из холестерина (С27) и секретируются в желчь в виде конъюгата с глицином и таурином. Свободные желчные кислоты сорбируются в терминальном отделе тонкого и в толстом кишечнике за счет активного или пассивного транспорта и через систему портальной вены возвращаются в печень, где вновь формируются комплексы, возвращающиеся в желчь. В процессе каждого цикла утрачивается около 5 % исходного количества желчных кислот. Желчные кислоты, обнаруживаемые в кишечнике, находятся в свободном состоянии. Так как в фекалиях безмикробных животных отсутствуют вторичные желчные кислоты, то предполагается, что их образование связано с жизнедеятельностью кишечных бактерий. В настоящее время накоплены многочисленные данные, свидетельствующие о том, что кишечная микрофлора человека и других животных способна осуществлять биотрансформацию желчных кислот, холестерина, стероидных гормонов (эстрогены и андрогены) в различные метаболиты в процессе кишечно-печеночной рециркуляции этих липидов. Холестерин подвергается метаболизации кишечными бактериями с образованием копростанона, копростанола и небольших количеств холестенона.

Эстрогены (эстрон, эстрадиол, эстриол), кортикостероиды, прогестероны, андростаны экскретируются из печени в желчь в виде конъюгатов с глюкуроновой кислотой или сульфатом. В толстом кишечнике они подвергаются гидролизу с высвобождением свободных гормонов. В дальнейшем в условиях анаэробиоза кишечные бактерии могут подвергать свободные эстрогены различным трансформациям. В результате эстрон может превращаться в эстрадиол. Фекальная микрофлора способна также модифицировать молекулу 16 а- гидроксиэстрона с образованием эстриола.

В процессе биотрансформации холестеролсодержащих липидов могут принимать участие клостридии, энтерококки, бактероиды различных видов, а также другие кишечные микроорганизмы. Доказано, что многие виды лактобацилл являются активными продуцентами гидролитических ферментов, осуществляющих деконъюгацию комплексов желчных кислот.

Кишечно–печеночной циркуляции подвергаются также различные лекарственные препараты и другие ксенобиотики, включая рифампицин, морфин, дегоксин, диэтильстилбэстрол, колхицин, хлорпромазин и многие другие. В них могут вовлекаться и такие субстраты как фолиевая кислота, витамин В12, протопорфирин, метаболиты витамина D и другие эндогенно образующиеся вещества.

Продукция биологически активных соединений

Микроорганизмы, населяющие кожу и слизистые, прежде всего присутствующие в желудочно-кишечном тракте, не только участвуют в обеспечении организма хозяина необходимыми для удовлетворения энергетических и пластических потребностей соединениями, но и продуцируют значительное количество разнообразных физиологически активных субстанций, различных гормоноподобных соединений, медиаторов, контролирующих пищеварительные и эндокринные функции, обмен веществ в целом. Летучие жирные кислоты (ЛЖК) являются одним из главных промежуточных и конечных продуктов микробной ферментации углеводов, жиров и белков. Так, в результате анаэробного брожения углеводов, образуются уксусная, пропионовая и масляная кислоты; метаболизация белков кишечными бактериями ведет к образованию масляной (из валина) и изовалерьяновой (из лейцина) кислот.

Кроме этого ЛЖК принимают участие в регуляции абсорбции ионов натрия, калия, хлора и воды, контролируют содержание просветного бикарбоната и уровень рН. Регулируют также абсорбцию кальция, натрия и цинка. Таким образом, ЛЖК следует рассматривать как один из главных механизмов хозяина, поддерживающих его водный, электролитный и кислотно–щелочной балансы. Они являются также важнейшими регуляторами углеводного и, возможно, липидного метаболизма в печени и других тканях.

Витамины. Известно, что витамины требуются клеткам животных, растений и микроорганизмов как ко-факторы в различных метаболических реакциях. Исследования на безмикробных и конвенциональных животных продемонстрировали, что присутствующие в организме хозяина микроорганизмы способны синтезировать значительные количества разнообразных витаминов, при этом часто в количествах, которых достаточно не только для обеспечения их собственных потребностей, но и для обеспечения нужд хозяина.

Тиамин синтезируется кишечной микрофлорой, кроме того на общий уровень витамина В1 в содержимом слепой кишки влияет не только диета, наличие или отсутствие микрофлоры в организме хозяина, но и копрофагия. Кишечные бактерии, прежде всего те, что локализованы в нижних отделах подвздошной кишки, синтезируют гомологи витамина К.

Витамин В12 (цианокобаламин) синтезируется только микроорганизмами (Propionibacterium, Eubakterium, Butiribakterium, Bifidobakterium, Laktobakterium, Salmonella и некоторыми другими). При этом наиболее интенсивно этот процесс идет в анаэробных условиях. Этот витамин, образуемый микрофлорой различных животных, сорбируясь из тонкого кишечника, проникает в мясо и молоко. Человек в значительной степени удовлетворяет свои потребности в этом витамине, используя в питании продукты животного происхождения. Микрофлора человека также способна синтезировать данный витамин.

Бактериальные липополисахариды (ЛПС).

Грамотрицательные бактерии, относящиеся к семействам Bakteroidaceae, Chlamidiaceae, Enterobakteriaceae, Neisseriaceae, Spirochetaceae, Vibrionaceae, Veilonellaceae и другим содержат в своей клеточной стенке трехкомпонентную структуру, называемую бактериальным липополисахаридом. ЛПС высвобождается из бактериальных клеток при их гибели в результате аутолиза под действием различных токсинов и антибиотиков. Из ЖКТ ЛПС могут проникать в ткани и органы через портальную вену или через кишечную лимфатическую систему. Это приводит к различным изменениям в организме: снижает количество употребляемой пищи, активность липопротеинлипаз в мышцах и костях, содержание липопротеинов в плазме крови, синтез жирных кислот печени, увеличивает в крови уровень ненасыщенных жирных кислот и триглицеридов, нарушает баланс клеточного гликогена. ЛПС вызывают клинические проявления токсикоза, сопровождающегося слабостью, одышкой, нарушением сердечной деятельности. Низкие концентрации ЛПС стимулируют фагоцитоз, вызывают агрегацию тромбоцитов, повышают температуру тела и липосидеремию. Они вызывают неспецифическую пролиферацию Т и В клеток, активируют макрофаги, усиливают иммунный ответ, повышают противоопухолевую резистентность, естественную устойчивость к инфекциям и аутоиммунные реакции.

Накопление ЛПС в организме человека может способствовать развитию септического шока, к появлению заболеваний печени и воспалительных поражений кишечника, острой почечной недостаточности, гломерулонефритам, нарушению дыхания у взрослых, появлению некротического энтероколита и синдрому отторжения трансплантанта.

Пептидогликаны и другие продукты, образуемые грамположительными бактериями способны активно участвовать в регуляции иммунного статуса хозяина, вмешиваться в функции иммунокомпетентных клеток и органов. Пептидогликаны способны оказывать адьювантный и митагенный эффекты, активировать комплемент, индуцировать выработку специфических антител. Экзотоксины микробов оказывают токсическое действие на ткани и органы человека, обладают фосфолипазной, коагулазной, гиалуронидазной, липазной, дезоксирибонуклеазной активностями, что может привести к повреждению мембран различных клеток и тканей организма человека.

Амины и другие биологически активные соединения выделяемые энтеробактериями, энтерококками, лактобактериями, анаэробами, оказывают разнообразный эффект на организм человека и животных, принимают участие в патологических процессах в кишечнике, печени и мочевом пузыре.

Многие представители организма человека образуют в процессе своей жизнедеятельности разнообразные химические соединения, проявляющие антимикробную активность. Энтеробактерии и лактобактерии вырабатывают бактериоцины, которые блокируют синтез макромолекул чувствительных к ним клеток и оказывают антимикробный эффект, подавляя метаболизм клеток. Они способствуют прекращению роста и размножения клеток, подавляют синтез РНК, ДНК, белка и различных адаптивных ферментов клеток. Лактобактерии выделяют различные бактериоцины, низин, диплоцин, лактострепцин, гельветицин, лактобревин, булгарицин, лактоцины, плантарицин и педиоцин. Поэтому они могут проявлять широкий спектр антимикробной активности, ингибируя рост и размножение бацилл, клостридий, стрептококков, стафилококков, энтеробактерий, псевдомонад, листерий и грибов рода кандида. Ацидофильные лактобактерии ингибируют рост кампилобактерий и холерных вибрионов.

Бифидобактерии выделяют бифидин, бифилонг, которые проявляют антимикробную активность в отношении энтеробактерий, вибрионов, стрептококков и стафилококков. Продукция бактериоциноподобных соединений выявлена у многих зеленящих стрептококков, обитающих на слизистых верхних дыхательных путей. Они, в основном, подавляют рост различных видов бактероидов. Бациллы, обитающие в кишечнике, выделяют полимиксины, колистин, бацитрацин, грамицидин, субтилин, бутирозин, которые активны преимущественно против грамположительных бактерий. Однако, полимиксин и колистин эффективны только против грамотрицательных бактерий. Пептострептококки выделяют антимикробные субстанции, подавляющие рост многих грамположительных бактерий, включая клостридии.

Антимикробный эффект многих микроорганизмов связан с их способностью синтезировать различные органические кислоты: муравьиную, уксусную, молочную и пропионовую, что приводит к снижению рН среды и подавляет рост грамположительных и грамотрицательных бактерий.

Некоторые молочнокислые бактерии выделяют в процессе своей жизнедеятельности перекись водорода, которая может приводить к гибели вирусов в организме человека. Представители нормальной микрофлоры: лактобациллы, энтерококки и другие микроорганизмы выделяют лизоцим, который расщепляет пептидогликан грамположительных бактерий.

Иммуногенная роль

Реакция организма хозяина на многочисленные микроорганизмы, обитающие на коже и слизистых это важный компонент иммунологического гомеостаза. Нормальная микрофлора играет важную роль в формировании иммунокомпетентных органов и тканей организма. Бактерии, ассоциируясь с микозным слоем кишечного тракта, активируют местные и системные иммунокомпетентные ткани, усиливают макрофагальную активность организма.

Назначение больным детям с заболеваниями ЖКТ препаратов на основе лактобактерий сокращает период выздоровления, усиливает неспецифический гуморальный ответ, вызывает возрастание количества всех классов иммуноглобулинов и, особенно, секреторного иммуноглобулина А. Иммуностимулирующее действие оказывает пропионибактерии, эубактерии, дрожжи и бифидобактерии. Назначение живых бифидо- и лактобактерий способствует уменьшению воспалительных процессов в ЖКТ, а так же увеличивают устойчивость к введению энтеропатогенных кишечных палочек, повышают резистентность к действию эндотоксина, стимулируют антительный и клеточный иммунный ответы, вызывают повышение количества лимфоцитов в лимфоцитарных органах и повышают неспецифическую антибактериальную защиту организма. Пропионибактерии активируют макрофаги, увеличивают адгезивные свойства фагоцитов, повышают активность лизосомальных ферментов, оказывают иммуномодулирующий эффект за счет синтеза интерферона и неоптерина.

Обеспечение колонизационной резистентности и предотвращение транслокации

Нормальная микрофлора обеспечивает колонизационную резистентность организма человека. Под колонизационной резистентностью понимают совокупность механизмов, придающих индивидуальную стабильность нормальной микрофлоры и обеспечивающих предотвращение заселения организма человека посторонними микроорганизмами и распространение представителей нормальной микрофлоры на поверхности кожи, слизистых в их естественных местах обитания. При снижении колонизационной резистентности на коже и слизистых организма человека появляются патогенные микроорганизмы, которые могут проникать во внутренние органы и ткани и приводить к развитию гнойно-воспалительных процессов и септицемии.

Оппортунистические инфекции в организме человека являются следствием снижения колонизационной резистентности в желудочно-кишечном тракте. К ее снижению могут приводить использование антибиотиков, лекарственных и противоопухолевых препаратов, которые вызывают микроэкологические нарушения в организме человека за счет гибели микроорганизмов, резкого изменения рН и окислительно–восстановительного потенциала клеток. К факторам, способствующим снижению колонизационной резистентности, можно отнести стрессовые ситуации, связанные с космическими полетами, изменением географии места жительства, переходом на иной пищевой рацион, голоданием, операционными вмешательствами, бактериальными и вирусными инфекциями, первичными и вторичными иммунодефицитами и механическими повреждениями биопленки при различных медицинских манипуляциях.

Антагонизм микроорганизмов, составляющих нормальную микрофлору, в отношении патогенных бактерий, обусловлен продукцией бактериоцинов, лизоцима, пептидов, различных органических кислот и т.д. Перекись водорода и сероводород, образующийся при метаболизме микроорганизмов, угнетают рост и размножение бактерий и нарушают процесс их фиксации и прикрепления к тканям организма человека.

Численность и состав бактериальных популяций на слизистых контролируется также конкуренцией за питательные субстраты. Отличие в составе микрофлоры в различных участках организма определяется количеством муцина, образуемого бокаловидными клетками. Микробы, имеющие ферменты муциназы, легко и быстро утилизируют муцины, что способствует их прикреплению к слизистым оболочкам.

Многие патогенные и потенциально патогенные микроорганизмы выделяют токсины и другие факторы агрессии и защиты, ингибирующие специфические и неспецифические механизмы защиты хозяина, а также рост индигенных микроорганизмов. Установлено, что детоксикация этих субстанций или ингибирование их образования представителями нормальной микрофлоры предотвращает колонизацию слизистых определенными группами патогенных бактерий.

К факторам колонизационной резистентности можно отнести продукцию бактериями различных неспецифических стимуляторов иммуногенеза и активаторов фагоцитарной и ферментативной активности.

Бактериальные липополисахариды и антигенны фимбрий у представителей нормальной микрофлоры участвуют в регуляции IgА иммунного ответа. Бактероиды, клостридии, пропионибактерии, лактобактерии высвобождают в процессе своей жизнедеятельности низкомолекулярные пептиды. Бактерии могут повышать колонизационную резистентность пищеварительного тракта за счет стимуляции скорости прохождения содержимого через просвет кишечника и активации иммунных механизмов слизистых (таблица 2).

Таблица 2. Механизмы, обеспечивающие устойчивость кожи и слизистых, к колонизации посторонней микрофлоры

Биопленка, выстилающая кожу и слизистые

Кожа и слизистые

Иммунные механизмы защиты хозяина

Антагонистическая активность (антибиотики, лизоцим, бактериоцины и др.)

Механическая защита

Фагоцитарная система и опсонизирующие антитела

Органические кислоты (уксусная, пропионовая и др.)

Движение эпителия, перистальтика

Система комплемента

Образование свободных желчных кислот из конъюгатов

Десквамация мукозного эпителия

Система иммуно-компетентных клеток

Конкуренция за рецепторы

Антимикробный эффект секретов хозяина

Медиаторы иммунного ответа

Конкуренция за пищевые субстраты

Состав и количество муцина

Детоксикация факторов агрессии и инактивация патогенных микроорганизмов

Напряженность кислорода по толщине биопленки

Стимуляция механизмов защиты хозяина (увеличение подвижности клеток слизистых, скорости обновления клеток и др.)

Скорость обновления, созревания и метаболизма мукозного эпителия

Продукция соединений, стимулирующих иммунные механизмы защиты и активность ферментов