Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ прак. колеб и вол.doc
Скачиваний:
32
Добавлен:
18.05.2015
Размер:
1.56 Mб
Скачать

Интерференция волн. Стоячие волны.

Если в некоторый области пространства распространяются одновременно несколько электромагнитных волн, то в области наложения в каждой точке векторы и волн геометрически складываются. В этом суть принципа суперпозиции в волновых процессах. В случае наложения когерентных волн (волн с одинаковыми частотами или с постоянной разностью фаз колебаний в каждой точке пространстве), наблюдается явление интерференции –устойчиво сохраняется перераспределение энергии волн между точками среды в области наложения с максимумами и минимумами энергии колебаний. Частным случаем интерференции является волновой процесс, называемый стоячей волной, который возникает при наложении встречных плоских волн с одинаковой частотой (как правило, волн - бегущей и отраженной). Стоячая волна образуется в ограниченной области пространства.

Если

- бегущая волна (10)

- отраженная волна (11)

то уравнение ее для вектора имеет вид

(12)

где - амплитуда стоячей волны,- ее фаза,- волновой вектор,- длина бегущей волны.

В точках, где (n=0,1,2,…) амплитуда в стоячей волне самая большая. Это ее пучности. В точках, где (n=0,1,2,….), амплитуда стоячей волны превращаются в нуль. Это узлы стоячей волны. Расстояние между соседними пучностями, как и между соседними узлами, равно .

Из уравнения (12) следует, что фаза колебаний от Х не зависит, соседние точки должны одновременно достигать максимального и минимального отклонений. Однако при переходе через узел фаза изменяется на противоположную, т.к. множитель 2Е0coskx при переходе через нуль меняет свой знак.

Поляризованные волны

Волну, изображенную на рис.1, называют линейно или плоскополяризованной, т.к. направление (плоскость) колебания векторов и относительно вектора скорости в процессе распространения волны остается неизменными. Есть и другие, более сложные формы поляризации электромагнитной волны- эллиптическая (или круговая). В этом случае в процессе распространения в пространстве вектор и изменяет свое направление колебания относительно , но таким образом, что его конец описывает в пространстве эллипс (или окружность). В поляризованной волне всегда имеется какая-то определенная ориентация относительно направления распространения волны (осевая симметрия).

Однако, в реальных условиях могут быть реализованы и такие волны, где указанное выше положение нарушается- вектор в волне может иметь любые направления колебаний, причем, в одних направлениях он может иметь большую амплитуду, в других- меньшую. То есть могут быть неполяризованные волны. Такие волны могут возникнуть вследствие отсутствия осевой симметрии в излучателе, при преломлении и отражении волн на границах двух сред, при распространении волн в анизотропной среде.

Наличие или отсутствие поляризации можно проверить специальными устройствами- анализаторами. Для волн радиодиапазона (сантиметровых и миллиметровых радиоволн), например, в качестве анализатора может быть использована решетка с параллельными металлическими прутиками- поляризационнрешетка. Для электромагнитных волн оптического диапазона роль анализатора (поляризатора) выполняют естественные анизотропные кристаллы или пластинки, вырезанные из прозрачных для света анизотропных кристаллов.

Х Z

Y

Еу

Ех

Рис.3

Рассмотрим, что происходит при прохождении электромагнитных волн через поляризационную решетку (рис.3). Предположим, что волна сантиметрового диапазона, распространяющаяся вдоль оси Z, имеет Х и Y компоненты вектора . Какое действие оказывают на них проволочки при прохождении волны через решетку? Начнем сY-компоненты. Электрическое поле волны вызовет перемещение электронов в металле вдоль проволочек. За время, меньшее периода волны, электроны достигнут установившейся скорости. Поле волны совершит работу над электронами, передаст им часть своей энергии. В свою очередь электроны частично эту энергию передают при столкновениях с кристаллической решеткой проводника, которая перейдет в тепло. Это во-первых. Во-вторых, т.к. электроны, испытывая действие переменного электрического поля, совершают колебательные движения вдоль проволочек, то они являются элементарными излучателями вторичных электромагнитных волн. Большая часть энергии электронов излучается. Расчет показывает, что при сложении вторичной волны с падающей в положительном направлении оси Z. Эти волны взаимно погашают друг друга, т.е. волна электронов уничтожает падающую волну. В противоположном направлении (-Z), излучение, вызванное движением электронов вдоль оси Y, дает отраженную волну. Т.о., ограда из проволочек исключает - компоненту в прошедшей волне. А что происходит с Х- компонентой вектора? Электроны металла не могут свободно перемещаться вдоль этого направления из-за ограниченности размеров проволоки. Поэтому они не достигают определенной конечной скорости, как это было в случае движения вдольY, а образуют, поверхностный заряд вдоль поверхностей проволок, обращенных к осям + Х и – Х. Когда величина поля этого поверхностного заряда станет достаточной для компенсации внешнего поля внутри проводника, электроны проволок перестанут двигаться. Такое состояние достигается за время, меньшее периода колебаний падающей волны. То есть, в этом случае электроны находятся в статическом равновесии. Они не испускают и не поглощают энергию. Поэтому при прохождении через проволочную ограду Х- компонента изменяться не будет. Таким образом, поляризационная решетка обладает селективной (избирательной) пропускной способностью для волн с различным направлением колебаний вектора.