Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
колобок.doc
Скачиваний:
52
Добавлен:
11.04.2015
Размер:
103.42 Кб
Скачать

Вопрос 1

Система отсчёта— это совокупность тел отсчета, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел.

Путь– длина траектории.

Радиус-вектор— вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Перемещение— изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка — это модуль перемещения, измеряется в метрах (СИ).

Скорость— векторная физическая величина, характеризующая быстроту перемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

Ускорение— производная скорости по времени, векторная величина, показывающая, на сколько изменяется вектор скорости точки при её движении за единицу времени (то есть ускорение учитывает не только изменение величины скорости, но и её направления).

Ускорение2– это векторная физическая величина, характеризующая быстроту изменения скорости по величине и направлению.

Вопрос 2

Угловое перемещение — векторная величина, характеризующая изменение угловой координаты в процессе её движения.

Угловая скорость— векторная величина, характеризующая быстроту вращения материальной точки. Вектор направлен вдоль оси вращения таким образом, чтобы, смотря с его конца, вращение казалось происходящим против часовой стрелки.

Угловое ускорение— псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

Вектор углового ускорения направлен вдоль оси вращения (в сторону W(омега) при ускоренном вращении и противоположноW(омега)— при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости по времени.

Существует связь между тангенциальным и угловым ускорениями:

где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/с2 .

Связь между линейными и угловыми величинами, характеризующими движение:

Отдельные точки вращающегося тела имеют различные линейные скорости v, которые непрерывно изменяют

свое направление и зависят от угловой скорости ω и расстояния r соответствующей точки до оси вращения.

Точка, находящаяся на расстоянии r от оси вращения проходит путь ΔS = rΔφ. Поделим обе части равенства на

Переходя к пределам при , получим или .

Таким образом, чем дальше отстоит точка от оси вращения, тем больше ее линейная скорость. По определению

ускорения, или

что значения линейной скорости, тангенциального и нормального ускорений растут по мере удаления от оси

вращения. Формула устанавливает связь между модулями векторов v, r, ω, которые перпендикулярны

друг к другу.

Ускорение при криволинейном движении:

При криволинейном движении точки направление ее скорости все время изменяется, а модуль скорости может как изменяться, так и оставаться постоянным. Но даже если модуль скорости не изменяется, ее все равно нельзя считать постоянной. Ведь скорость - величина векторная, а для векторных величин модуль и направление одинаково важны. Поэтому криволинейное движение всегда движение ускоренное.

С изменением скорости по модулю мы уже знакомы. Ведь при равноускоренном прямолинейном движении изменяется именно модуль скорости. И мы знаем, что в этом случае вектор ускорения направлен вдоль вектора скорости или против него, а модуль ускорении определяется изменением модуля скорости в единицу времени. Так как нам это уже известно, то в дальнейшем мы будем рассматривать только такое криволинейное движение, при котором модуль скорости остается все время постоянным, так что ускорение будет связано только с изменением направления вектора скорости. Как направлено и чему равно это ускорение?

И модуль, и направление ускорения должны, очевидно, зависеть от формы криволинейной траектории. Но нам не придется рассматривать каждую из бесчисленных форм криволинейных траекторий. На рисунке 1 показана сложная траектория, по которой движется тело. Из рисунка видно, что отдельные участки криволинейной траектории представляют собой приблизительно дуги окружностей, изображенных тонкими линиями. Например, участки KL или ВМ - это дуги окружностей малых радиусов, участок EF - это дуга окружности большого радиуса.

Таким образом, движение по любой криволинейной траектории можно представить как движение по дугам некоторых окружностей. Поэтому задача нахождения ускорения при криволинейном движении сводится к отысканию ускорения при равномерном движении тела по окружности.